Experimental Study on Hysteresis Nonlinearity of Piezoelectric Actuator

2010 ◽  
Vol 44-47 ◽  
pp. 2968-2972
Author(s):  
Hua Wei Ji ◽  
Yong Qing Wen

In recent years, piezoelectric actuator is being widely used in vibration suppression and micro positioning applications for its fast response, nanometer resolution, no backlash, no friction and bigger driving force. However, its inherent hysteresis nonlinear characteristics between the input voltage and output displacement limit its control accuracy. To optimize the performance of piezoelectric actuator, it is essential to understand the hysteresis nonlinear behavior. In this work, the hysteresis nonlinear behavior was studied by experiment; the dependence of output characteristics on voltage under different electric field conditions in piezoelectric actuator was discussed. It was found that the input method and frequency of loading voltage has a great effect on the hysteresis nonlinearity of piezoelectric actuator. At last, some different hysteresis nonlinear models were introduced.

2011 ◽  
Vol 179-180 ◽  
pp. 635-640
Author(s):  
Hua Wei Ji ◽  
Yong Qing Wen

Piezoelectric actuator is being widely used in vibration suppression and micro positioning applications for fast response, nanometer resolution, no backlash, no friction and bigger driving force. However, its inherent hysteresis characteristics between the input voltage and output displacement limit its control accuracy. An efficient way to eliminate this limitation is to model and control this hysteresis. In order solve the problem, the characteristic of piezoelectric actuator was introduced, and its static hysteresis was studied by experiment. A Preisach model was put forward to describe the hysteresis nonlinearity; a model feedforword controller was used to quicken system response. Control experiment results indicate that the proposed model and control method has good performance for precision control


2014 ◽  
Vol 67 (5) ◽  
Author(s):  
Marwan Nafea M. ◽  
Z. Mohamed ◽  
Auwalu M. Abdullahi ◽  
M. R. Ahmad ◽  
A. R. Husain

Piezoelectric actuators are popularly applied as actuators in high precision systems due to their small displacement resolution, fast response and simple construction. However, the hysteresis nonlinear behavior limits the dynamic modeling and tracking control of piezoelectric actuators. This paper studies a dynamic model of a moving stage driven by piezoelectric stack actuator. The Bouc-Wen model is introduced and analyzed to express the nonlinear hysteresis term. Two triangular actuating voltages with frequency of 1 Hz and amplitudes of 80 V and 90 V are applied to drive the piezoelectric stack actuator. The results demonstrate the existence of the hysteresis phenomenon between the input voltage and the output displacement of the piezoelectric stack actuator, and validate the correctness of the model.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3342 ◽  
Author(s):  
Wenjun Li ◽  
Chen Zhang ◽  
Wei Gao ◽  
Miaolei Zhou

Piezoelectric actuators (PEA) have been widely used in the ultra-precision manufacturing fields. However, the hysteresis nonlinearity between the input voltage and the output displacement, which possesses the properties of rate dependency and multivalued mapping, seriously impedes the positioning accuracy of the PEA. This paper investigates a control methodology without the hysteresis model for PEA actuated nanopositioning systems, in which the inherent drawback generated by the hysteresis nonlinearity aggregates the control accuracy of the PEA. To address this problem, a neural network self-tuning control approach is proposed to realize the high accuracy tracking with respect to the system uncertainties and hysteresis nonlinearity of the PEA. First, the PEA is described as a nonlinear equation with two variables, which are unknown. Then, using the capabilities of super approximation and adaptive parameter adjustment, the neural network identifiers are used to approximate the two unknown variables automatically updated without any off-line identification, respectively. To verify the validity and effectiveness of the proposed control methodology, a series of experiments is executed on a commercial PEA product. The experimental results illustrate that the established neural network self-tuning control method is efficient in damping the hysteresis nonlinearity and enhancing the trajectory tracking property.


2011 ◽  
Vol 480-481 ◽  
pp. 1167-1172
Author(s):  
Hua Wei Ji ◽  
Yong Qing Wen ◽  
Chen Ming Fu

Micro-displacement manipulator consists of piezoelectric actuator and flexure hinge is being widely used in precision positioning technology for its high resolution of displacement, high stiffness and fast frequency response. However, the hysteresis nonlinearity of actuator and vibration limited its control accuracy. In order to improve the positioning precision, the relationship between input voltage and output displacement was studied, the hysteresis nonlinearity was described by mathematical method, and a closed-loop controller was proposed to control the hysteresis and vibration. Experiment results revealed the proposed closed-loop controller can enhance the control precision of micro-displacement manipulator.


2011 ◽  
Vol 179-180 ◽  
pp. 1368-1373 ◽  
Author(s):  
Hua Wei Ji ◽  
Yong Qing Wen

In recent years, a flexure hinged micro-displacement platform driven by piezoelectric actuator is being widely used in vibration suppression and micro positioning applications for its fast response, nanometer resolution, no backlash, no friction and bigger driving force. This kind of precision micro positioning system with a high displacement resolution and wide motion range has been required for industrialized applications for a long time. This paper discusses the design and the characteristics of a flexure hinge-based micro-displacement platform driven by piezoelectric actuator, a four-bar parallel mechanism and a monolithic symmetrical mechanism are adopted in the design. An analytical model is presented and a series of formulae for the static behavior of the platform are derived. Based on the theoretical analysis, the optimum design schema is put forward. The experimental demonstration to study the performance of the platform is described, and the method for reducing nonlinearity errors is proposed. The experimental results are in close agreement with those predicted by the theoretical analysis.


Author(s):  
Liqun Cheng ◽  
Wanzhong Chen ◽  
Liguo Tian

Piezoelectric actuator (PEA) is widely applied in the field of micro/nano high precision positioning. However PEA has the phenomenon of hysteresis non-linearity between input voltage and output displacement, due to the natural property of piezoelectric materials. The PEA hysteresis can be compensated by hysteresis models, which makes the input voltage and output displacement more linearity. The research work on compensation of PEA hysteresis by using various hysteresis models has been being a hot topic. This paper presents a modified direct inverse rate-independent Prandtl–Ishlinskii (PI) (MDIPI) model for compensating the hysteresis of PEA. The proposed MDIPI model has two different sets of operators compared with classical PI (CPI) model having one set of operators. For the two sets operators in MDIPI model one is rate operators and the other is modified classical operators. By combining the two sets operators, the MDIPI model has the properties of the adaption and accuracy in hysteresis compensation. The MDIPI model can be used as feedforward controller to compensate different reference trajectories. Parameters of MDIPI model are calculated by matlab optimization tool box. The experiments of compensating the complex displacement trajectory and sinusoidal trajectory are validated on a platform of commercial PEA. The MDIPI model has achieved more accurate results than the Krasnosel’skii–Pokrovkii (KP), Preisach and CPI models. It is effective in improving the accuracy of PEA hysteresis compensation.


Author(s):  
Shuai Wang ◽  
Zhaobo Chen ◽  
Yinghou Jiao ◽  
Wenchao Mo ◽  
Xiaoxiang Liu

The hysteresis characteristic is a common property of intelligent materials, such as shape memory alloy, giant magnetostrictive material and piezoelectric material. It cannot be neglected when the accuracy requirement is at the range of micro meter or smaller. Therefore, it’s essential and important to eliminate the hysteresis with some measures as far as possible. In this paper, an experiment is conducted to obtain the hysteresis characteristic of a piezoelectric actuator (PEA) which is designed and fabricated. The relationship between the output displacement and input voltage is established by combining the RBF neural network (RBFNN) and hysteresis operator. In order to compensate the hysteresis of PEA, an inverse model is built by using RBFNN and an inverse hysteresis operator served as feedforward compensation. Then a PI feedback controller is adopted to eliminate the influence the modeling error of feedforward loop. An experiment based on real time control system is conducted to let the output displacement tracking a desired curve. The test results indicate that the hybrid control system is effective in compensating hysteresis of PEA and makes the output displacement controllable.


Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 863 ◽  
Author(s):  
Weiqing Huang ◽  
Mengxin Sun

A piezoelectric actuator using a lever mechanism is designed, fabricated, and tested with the aim of accomplishing long-travel precision linear driving based on the stick-slip principle. The proposed actuator mainly consists of a stator, an adjustment mechanism, a preload mechanism, a base, and a linear guide. The stator design, comprising a piezoelectric stack and a lever mechanism with a long hinge used to increase the displacement of the driving foot, is described. A simplified model of the stator is created. Its design parameters are determined by an analytical model and confirmed using the finite element method. In a series of experiments, a laser displacement sensor is employed to measure the displacement responses of the actuator under the application of different driving signals. The experiment results demonstrate that the velocity of the actuator rises from 0.05 mm/s to 1.8 mm/s with the frequency increasing from 30 Hz to 150 Hz and the voltage increasing from 30 V to 150 V. It is shown that the minimum step distance of the actuator is 0.875 μm. The proposed actuator features large stroke, a simple structure, fast response, and high resolution.


2005 ◽  
Vol 475-479 ◽  
pp. 2089-2094
Author(s):  
Hui Bin Xu ◽  
Tian Li Zhang ◽  
Cheng Bao Jiang ◽  
Hu Zhang

TbDyFe is a rare earth-iron magnetostrictive alloy with “giant” magnetostrain, good magnetomechanical coupling factor and fast response. Giant magnetostrictive actuators (GMAs) are designed and fabricated with home-made TbDyFe rods. Their magnetostrain properties under varied operation are tested. The static output displacement up to 100μm and output force up to 1500N were obtained. The dynamic displacement increases with amplitude under fixed frequency and decreases with frequency under fixed amplitude generally. The maximum dynamic output displacement of 146µm was obtained at natural frequency around 5Hz. Active vibration control employing GMA was implemented in the flexible structure. The excellent damping effect, 20-30 dB under the frequency range from 10Hz to 100Hz was obtained. The dynamic phase delay of GMA has been analyzed. A novel improved FSLMS algorithm is proposed to achieve a better control performance.


2021 ◽  
pp. 2150017
Author(s):  
Aifen Tian ◽  
Xixi Wang ◽  
Yue Sun ◽  
Xinrong Zhang ◽  
Hongyan Wang ◽  
...  

Based on the biological characteristics of tulip, the low driving voltage and fast response of ionic polymer metal composite (IPMC), we analyzed the fabrication, morphology and performance of the platinum IPMC (Pt-IPMC) and selected the right IPMC for driving bionic tulip. The preparation and performance of IPMC was analyzed first in this paper such as blocking force, output displacement and bending angle of IPMC under the different directed current voltage (DC). The optimal IPMC sample size and driving voltage were selected based on tulip blooming angles and the strain energy density of IPMC, which completed the blooming process of bionic tulip. The feasibility of IPMC used in driving bionic field was fully proved in this paper, which laid a foundation for the application of IPMC in driving biomimetic biological robots.


Sign in / Sign up

Export Citation Format

Share Document