Levitation System Controller Design Based on the Implicit General Predictive Control Algorithm

2013 ◽  
Vol 444-445 ◽  
pp. 806-811
Author(s):  
Yu Yin Wang ◽  
Jie Li

The levitation control system is a key technique of the maglev system. Due to the strong non-linear character of the magnetic force, as well as the model uncertainties and external interferences of the maglev system, the Implicit General Predictive Control algorithm, which adjusts the parameters of the control scheme by using the input and output data, is adopted in this article. Taking the single electro-magnet levitation system as the research object, this algorithm not only guarantees the stability of the system, but also suppresses the vibration caused by the flexibility of the track. The advantages of this algorithm include: the superior control capacity, roll over optimization and little dependence on model. The simulation approves the validity of this method.

Author(s):  
Lafta E. Jumaa Alkurawy ◽  
Khalid G. Mohammed

In this work, we suggest a technique of controller design that applied to systems based on nonlinear. We inform the sufficient conditions for the stability of closed loop system. The asymptotic stability of equilibrium and the nonlinear controller can be applied to improvement the stability of Magnetic Levitation system(MagLev). The MagLev nonlinear nodel can be obtained by state equation based on Lagrange function and Model Predictive Control has been used for MagLev system.


Author(s):  
Shadi Ansarpanahi ◽  
Samsul Bahari Mohd Noor

MPC also known as moving or receding horizon control, is a feedback control scheme that has originated in industry as a real-time computer control algorithm to solve linear and nonlinear multi-variable problems that have constraints and time delays. Since disturbances can drive model predictive control into non-convexity and instability this problem has attracted many researchers. The stability studies in this paper are illustrated in presence of colored noise, error in delay estimation, unstable and non-minimum phase system by means of numerical example. The simulation is carried out using an example, which is the main contribution of the paper.


Robotica ◽  
2018 ◽  
Vol 36 (10) ◽  
pp. 1527-1550 ◽  
Author(s):  
Francesco Pierri ◽  
Giuseppe Muscio ◽  
Fabrizio Caccavale

SUMMARYThis paper addresses the trajectory tracking control problem for a quadrotor aerial vehicle, equipped with a robotic manipulator (aerial manipulator). The controller is organized in two layers: in the top layer, an inverse kinematics algorithm computes the motion references for the actuated variables; in the bottom layer, a motion control algorithm is in charge of tracking the motion references computed by the upper layer. To the purpose, a model-based control scheme is adopted, where modelling uncertainties are compensated through an adaptive term. The stability of the proposed scheme is proven by resorting to Lyapunov arguments. Finally, a simulation case study is proposed to prove the effectiveness of the approach.


2020 ◽  
Author(s):  
Yongtao Zhao ◽  
Yiyong Yang ◽  
Xiuheng Wu ◽  
Xingjun Tao

Abstract Accurate pressure control and fast dynamic response are vital to the pneumatic electric braking system (PEBS) for that commercial vehicles require higher regulation precision of braking force on four wheels when braking force distribution is carried out under some conditions. Due to the lagging information acquisition, most feedback-based control algorithms are difficult to further improve the dynamic response of PEBS. Meanwhile, feedforward-based control algorithms like predictive control perform well in improving dynamic performance. but because of the large amount of computation and complexity of this kind of control algorithm, it cannot be applied in real-time on single-chip microcomputer, and it is still in the stage of theoretical research at present. To address this issue and for the sake of engineering reliability, this article presents a logic threshold control scheme combining analogous model predictive control (AMPC) and proportional control. In addition, an experimental device for real-time measuring PEBS multi-dynamic parameters is built. After correcting the key parameters, the precise model is determined and the influence of switching solenoid valve on its dynamic response characteristics is studied. For the control scheme, numerical and physical validation are executed to demonstrate the feasibility of the strategy and for the performance of the controller design. The experimental results show that the dynamic model of PEBS can accurately reflect its pressure characteristics. Furthermore, under different air source pressures, the designed controller can stably control the pressure output of PEBS and ensure that the error is within 8KPa. Compared with the traditional control algorithm, the rapidity is improved by 32.5%.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142093057
Author(s):  
Dong-Liang Chen ◽  
Guo-Ping Liu ◽  
Ru-Bo Zhang ◽  
Xingru Qu

In this article, the coordinated path-following control problem for networked unmanned surface vehicles is investigated. The communication network brings time delays and packet dropouts to the fleet, which will have negative effects on the control performance of the fleet. To attenuate the negative effects, a novel networked predictive control scheme is proposed. By introducing the predictive error into the control scheme, the proposed control strategy admits some advantages compared with existing networked predictive control strategies, for example, a degree of robustness to disturbances, lower requirements for the computing capacity of the onboard processors, high flexibility in controller design, and so on. Conditions that guarantee the control performance of the overall system are derived in the theoretical analysis. At last, experiments on hovercraft test beds are implemented to verify the effectiveness of the proposed control scheme.


Author(s):  
Emin Faruk Kececi

This paper reports a holonomic rescue robot where the robot is driven by screw wheels. The necessity of a such platform is explained and the mechanical design and the actual prototype are presented. In order to design an adaptive control algorithm to ensure the trajectory tracking, the dynamical model is constructed. The stability of the adaptive control algorithm is proven with Lyapunov stability analysis. The necessary electronics to implement the controller algorithm is explained and the conclusions and future work section reports the results of the study as well as the future research directions.


10.5772/10583 ◽  
2008 ◽  
Vol 5 (4) ◽  
pp. 34 ◽  
Author(s):  
Jianfu Du ◽  
Konstantin Kondak ◽  
Markus Bernard ◽  
Yaou Zhang ◽  
Tiansheng Lü ◽  
...  

Kinematical and dynamical equations of a small scale unmanned helicoper are presented in the paper. Based on these equations a model predictive control (MPC) method is proposed for controlling the helicopter. This novel method allows the direct accounting for the existing time delays which are used to model the dynamics of actuators and aerodynamics of the main rotor. Also the limits of the actuators are taken into the considerations during the controller design. The proposed control algorithm was verified in real flight experiments where good perfomance was shown in postion control mode.


1997 ◽  
Vol 119 (3) ◽  
pp. 486-490 ◽  
Author(s):  
Jia-Yush Yen ◽  
Chih-Jung Huang ◽  
Shu-Shung Lu

This paper presents the precision control of drive devices with significant stick-slip friction. The controller design follows the Pseudo-Derivative Feedback (PDF) control algorithm. Using the second order system model, the PDF controller offers arbitrary pole placement. In this paper, the stability proof for the controller with stick-slip friction is presented. On the basis of this proof, the stability criteria are derived. The paper also includes both the computer simulation and the experimental works to confirm the theoretical result. The experiments conducted on a Traction Type Drive Device (TTDD) shows that control accuracy of as high as ±1 arc – second is achieved.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1896 ◽  
Author(s):  
Antonio Rosales ◽  
Pedro Ponce ◽  
Hiram Ponce ◽  
Arturo Molina

Distributed generators (DGs) based on renewable energy systems such as wind turbines, solar panels, and storage systems, are key in transforming the current electric grid into a green and sustainable network. These DGs are called inverter-interfaced systems because they are integrated into the grid through power converters. However, inverter-interfaced systems lack inertia, deteriorating the stability of the grid as frequency and voltage oscillations emerge. Additionally, when DGs are connected to the grid, its robustness against unbalanced conditions must to be ensured. This paper presents a robust control scheme for power regulation in DGs, which includes inertia and operates under unbalanced conditions. The proposed scheme integrates a robust control algorithm to ensured power regulation, despite unbalanced voltages. The control algorithm is an artificial hydrocarbon network controller, which is a chemically-inspired technique, based on carbon networks, that provides stability, robustness, and accuracy. The robustness and stability of the proposed control scheme are tested using Lyapunov techniques. Simulation, considering one- and three-phase voltage sags, is executed to validate the performance of the control scheme.


Author(s):  
Zhong-Hua Pang ◽  
◽  
Guo-Ping Liu ◽  
Donghua Zhou ◽  
◽  
...  

This paper is concerned with the step output tracking controller design problem for networked discretetime linear systems. The communication constraints such as network-induced delay, packet disorder, and packet dropout are considered, which are treated as the round-trip time (RTT) delay with an upper bound. An event-driven networked predictive control scheme is proposed to actively compensate for the RTT delay, which avoids the requirement of synchronization between the controller side and the plant side. The stability of the closed-loop system and the design procedure of the observer-based controller are discussed. A numerical example is employed to illustrate the effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document