Synthesis and Characterization of Zinc Oxide Nanoparticles via Self-Combustion Technique

2014 ◽  
Vol 493 ◽  
pp. 609-614 ◽  
Author(s):  
Poppy Puspitasari ◽  
Andoko ◽  
Eddy Sutadji

Zinc oxide (ZnO) is a unique material which has been used in many researches. However synthesizing nanosize ZnO remains a challenge. This deal with the preparation of ZnO nanoparticles was synthesized by a self-combustion technique. In the self-combustion technique, nanoparticles was obtained by heating the materials until the mixture combusts at 110°C. ZnO nanoparticles were synthesized from Zn (NO3)2.6H2O precursor observed in two different solvent. The first set of experiment involved dissolving Zn (NO3)2.6H2O in nitric acid (HNO3) and adding ZnO, whereas for the second Ethylene Glycol (C2H6O2) was used as the solvent. The material was stirred at 250 r.p.m continuously for 1 month and 3 days. The mixture was then heated up until it combusted at 110°C. Samples were then annealed at 400°C for 1 hour . The ZnO samples were characterized using X-Ray Diffraction (XRD), Raman Spectroscopy, and Field Emission Scanning Electron Microscope (FESEM). The XRD analysis showed major peak at 20-30 of 2 theta scale with [10, [00, and [10 plane of the wurtzite hexagonal structure for both sets of ZnO samples. Samples were observed at raman shift for 138 and 439 cm-1and 141 and 443 cm-1before and after annealing. Synthesized ZnO 1 resulted the morphology of single crystal nanorods with average dimensions of 18 nm wide and 154 nm long. ZnO 2 has obtained the morphology of single crystal nanosphere with average diameter of 30 nm.Keywords:Zinc Oxide, Ethylene Glycol, Self-Combustion Technique

2018 ◽  
Vol 930 ◽  
pp. 79-84
Author(s):  
Juliana Simões Chagas Licurgo ◽  
Herval Ramos Paes Junior

In this work, copper-doped zinc oxide films (ZnO:Cu) were deposited by spray pyrolysis on glass substrates. The influence of doping concentration (0-10 at.%) on morphological, structural, optical and electrical properties of the ZnO:Cu films was investigated. Electrical characterization consisted in measuring the variation of electrical conductivity with temperature; they presented a typical semiconductor material behavior. Based on x-ray diffraction (XRD) analysis, it was able to confirm that the films are polycrystalline having a wurtzite hexagonal structure, preferentially oriented in the c-axis (002), and the crystallite size ranged from 41.60 to 50.70 nm. The optical characterization revealed that ZnO:Cu films present band gap energy between 3.18 and 3.27 eV. The films were homogeneous with good adhesion to the substrate. The results indicate the viability of using them in optoelectronic devices.


2013 ◽  
Vol 873 ◽  
pp. 426-430
Author(s):  
Xian Wu Xiu ◽  
Li Xu ◽  
Cheng Qiang Zhang

Molybdenum-doped zinc oxide (MZO) films have been prepared by RF magnetron sputtering on glass substrates at room temperature. The structural, electrical and optical properties of the films vary with sputtering power from 15 W to 70 W are investigated. X-ray diffraction (XRD) analysis reveals that all the films are polycrystalline with the hexagonal structure and have a preferred orientation along thecaxis perpendicular to the substrate. The resistivity increases with the increase of the RF power. The lowest resistivity achieved is 5.4×10-3Ω cm at a RF power of 15 W with a Hall mobility of 11 cm2V-1s-1and a carrier concentration of 1.1×1019cm-3. The average transmittance drops from 85% to 81% in the visible range and the optical band gap decreases from 3.26 eV to 3.19 eV with the increase of the RF power.


2010 ◽  
Vol 129-131 ◽  
pp. 143-148 ◽  
Author(s):  
Xiao Hui Wang

A series of zinc oxide-modified mesoporous SBA-15 materials were synthesized. The desulphurization test with a gas mixture containing 0.1 vol % hydrogen sulfide was carried out on these materials. Materials before and after the desulphurization test were analyzed using a variety of characterization techniques. The results suggest that zinc oxide modification can accelerate the transformation from a mesoporous to a zeolitic phase. The sample with the zinc content higher than 15.5 wt % shows the highest hydrogen sulfide breakthrough capacity up to 177.3 mg S/g.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1099 ◽  
Author(s):  
Sabrina M. Garner ◽  
Edgar A. O’Rear ◽  
Sharukh Soli Khajotia ◽  
Fernando Luis Esteban Florez

In this study, six solvents (water, diiodomethane, bromonaphthalene, formamide, ethanol and ethylene glycol) were examined for three nanoparticle substrates, zinc oxide and titanium dioxide (21 nm and 100 nm), with the goal of assessing the suitability of a modified drop penetration method (DPM) for orders of magnitude smaller particles. Nanoparticles were compressed into flat discs and the solvent dropped on the surface while the image with time was recorded. Contact angles were in reasonable agreement with literature over the range of 20–80°, but failed to provide acceptable results for surface energy components. It was necessary to eliminate certain solvents and substrates not meeting the selection criteria.


2013 ◽  
Vol 58 (2) ◽  
pp. 489-491 ◽  
Author(s):  
B. Hutera ◽  
A. Kmita ◽  
E. Olejnik ◽  
T. Tokarski

The paper presents a method for obtaining nanoparticles of ZnO by thermal decomposition of the Zn-containing compounds. The experiment was based on the thermal decomposition of basic zinc carbonate to zinc oxide (with a content of 58-61 wt.%). Basic zinc carbonate was analysed by derivatography and then annealed at a selected temperature (about 600ºC) for about 1 h. Products of thermal decomposition of the compound were studied by XRD analysis and SEM scanning microscopy.


2010 ◽  
Vol 11 ◽  
pp. 25-34 ◽  
Author(s):  
Noorhana Yahya ◽  
Hanita Daud ◽  
Nurulhuda Ali Tajuddin ◽  
Hasnah Mohd Daud ◽  
Afza Shafie ◽  
...  

Zinc oxide (ZnO) has found many important applications such as optoelectronic devices, sensors and varistors. The challenging part however is synthesizing ZnO nanoparticles and its utilisation as EM detectors. Sol-gel and self-combustion techniques were chosen in this study due to the ability to produce single phase and nano-size samples. The starting mixture consists of 10 grams of zinc (II) nitrate, Zn(NO3)2.6H2O salt which was dissolved in 50 mL of nitric acid, HNO3.The solution was stirred at 250 rpm continuously for 1 day. The mixture was then gradually heated for every 15 minutes until it combusted at 110oC for the self-combustion technique. For the sol-gel technique, the dissolved mixture was heated at 40oC, 50oC, 60oC and 70oC until the gelatine was formed. After the drying process, the as-prepared samples were annealed at 100oC and 200 oC for 1 hour for each technique. Characterizations were performed by using X-Ray Diffraction (XRD), Raman Spectra and Scanning Electron Microscopy (SEM).The XRD analysis showed a major peak of [101] plane at 2Ө for the self-combustion technique and the sol-gel technique. Raman results for the samples prepared via sol-gel and self-combustion techniques had shown the major peak of ZnO that is located at the Raman shifts of 437.67 cm-1. Using the Scherrer equation, single crystal nano particle of ZnO was successfully obtained in the range of 38.49 nm to 50.70 nm for the sample prepared via the sol gel technique. By the self-combustion technique, the average dimension of the as-prepared sample is in the range of 34-49 nm. Further heat treatment resulted in a major change of the Raman shift corresponding to the single phase ZnO nano particles. The best samples were used as electromagnetic (EM) detectors. The EM detectors are polymer based composite which were prepared using a casting technique.


2011 ◽  
Vol 383-390 ◽  
pp. 3823-3827 ◽  
Author(s):  
Ji Rui Li

In this paper, a precipitation method is investigated to prepare nanoscale zinc oxide (ZnO) as the precursor of silver coated antibacterial nanocomposite. Subsequently, silver loadeded zinc oxide nanocomposites (ZnO/Ag) are prepared by hydrolysis method. The average diameters and morphology of ZnO nanocomposites before and after silver loaded were compared. The results showed that the zinc oxide powder presented good dispersibility and uniform size a average diameter of 170 nm. Silver was coated on the precursor successfully, and the diameter of ZnO nanocomposites increased slightly.


2014 ◽  
Vol 602-603 ◽  
pp. 871-875
Author(s):  
Yen Pei Fu ◽  
Jian Jhih Chen

In this study, ZnO films, prepared by Chemical Bath Deposition (CBD), are applied as the conductive layers for thin film solar cells. Zinc acetate is used as a source of zinc, and different proportions of ammonia solution are added and well mixed. The growth of zinc oxide films in reaction solutions is taken place at 80°C and then heated to 500°C for one hour. In this study, the different ammonia concentrations and deposition times is controlled. The thin film structure is Hexagonal structure, which is determined by X-ray diffraction spectrometer (XRD) analysis. Scanning electron microscopy (SEM) is used as the observation of surface morphology, the bottom of the film is the interface where the heterogeneous nucleation happens. With the increase of deposition time, there were a few attached zinc oxide particles, which is formed by homogeneous nucleation. According to UV / visible light (UV / Vis) absorption spectrometer transmittance measurements and the relationship between/among the incident wavelength, it can be converted to the energy gaps (Eg), which are about 3.0 to 3.2eV, by using fluorescence spectroscopy analysis. The emission of zinc oxide films has two wavelengths which are located on 510nm and 570nm. According to Based on the all analytic results, the ammonia concentration at 0.05M, and the deposition time is 120 minutes, would obtain the conditions of ZnO films which is more suitable for applications of conductive layer material in thin film solar cell.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 241
Author(s):  
Thangavel Ponrasu ◽  
Bei-Hsin Chen ◽  
Tzung-Han Chou ◽  
Jia-Jiuan Wu ◽  
Yu-Shen Cheng

The fast-dissolving drug delivery systems (FDDDSs) are developed as nanofibers using food-grade water-soluble hydrophilic biopolymers that can disintegrate fast in the oral cavity and deliver drugs. Jelly fig polysaccharide (JFP) and pullulan were blended to prepare fast-dissolving nanofiber by electrospinning. The continuous and uniform nanofibers were produced from the solution of 1% (w/w) JFP, 12% (w/w) pullulan, and 1 wt% Triton X-305. The SEM images confirmed that the prepared nanofibers exhibited uniform morphology with an average diameter of 144 ± 19 nm. The inclusion of JFP in pullulan was confirmed by TGA and FTIR studies. XRD analysis revealed that the increased crystallinity of JFP/pullulan nanofiber was observed due to the formation of intermolecular hydrogen bonds. The tensile strength and water vapor permeability of the JFP/pullulan nanofiber membrane were also enhanced considerably compared to pullulan nanofiber. The JFP/pullulan nanofibers loaded with hydrophobic model drugs like ampicillin and dexamethasone were rapidly dissolved in water within 60 s and release the encapsulants dispersive into the surrounding. The antibacterial activity, fast disintegration properties of the JFP/pullulan nanofiber were also confirmed by the zone of inhibition and UV spectrum studies. Hence, JFP/pullulan nanofibers could be a promising carrier to encapsulate hydrophobic drugs for fast-dissolving/disintegrating delivery applications.


Sign in / Sign up

Export Citation Format

Share Document