Environmental Impacts Assessment of Liquid Crystal Extraction From Wasted LCD Panels

2014 ◽  
Vol 496-500 ◽  
pp. 55-62
Author(s):  
Yu Lin Wang ◽  
Hai Juan Hu ◽  
Sen Qi ◽  
Guang Fu Liu

In view of the extraction of liquid crystal from the wasted LCD panels, this paper aims to analyze the raw materials consumption, energy consumption and emissions to the environment in the extracting process based on the method of Life Cycle Assessment (LCA). The environmental impacts of the recycling procedure are assessed with the aid of LCIA(Life Cycle Inventory Assessment)method and CML2001 method provided by LCA analyzing software Gabi 4. Two ways of liquid crystal extraction mentioned in the paper are supercritical method and distilling method. The assessment results indicate: the supercritical method’s LCIA result is 3 times higher than the distilling method, but the liquid crystal extracting rate can reach 95% with a lower raw materials consumption; the environmental impacts of distilling method is lower than supercritical method, but its extracting rate of liquid crystal can only get to 50%. For industrial applications, supercritical method has greater advantages and there are more crafts to perfect for distilling method in improving the recovery rate of liquid crystal.

2018 ◽  
Vol 234 ◽  
pp. 02007 ◽  
Author(s):  
Ivan Evtimov ◽  
Rosen Ivanov ◽  
Georgi Kadikyanov ◽  
Gergana Staneva

This paper presents an analysis concerning the effectiveness of electric traction in comparison with conventional cars. The Life Cycle Assessment method is used. It estimates the energy spent for the extraction of the raw materials/sources, manufacturing and transportation of the components and the vehicle, motion, maintenance and repair during exploitation period and the recycling process. The impact of the production technology of the electric energy, needed for charging the battery, is taken into account. The energy consumption and CO2 emissions for the life cycle of electric and conventional cars are presented on graphs. Examples for Bulgaria and EU countries are given. The exploitation conditions in which the electric car is more effective regarding CO2 equivalent emissions are shown. The main influence on the effectiveness of electric cars has the structure of the energy mix of the country where the electric car is produced and is used in exploitation.


2021 ◽  
Vol 13 (9) ◽  
pp. 4856
Author(s):  
Xuejie Deng ◽  
Yu Li ◽  
Hao Liu ◽  
Yile Zhao ◽  
Yinchao Yang ◽  
...  

Microbial induced carbonate precipitation (MICP) is a new geotechnical engineering technology used to strengthen soils and other materials. Although it is considered to be environmentally friendly, there is a lack of quantitative data and objective evaluation to support conclusions about its environmental impact. In this paper, the energy consumption and carbon emissions of MICP technology are quantitatively analyzed by using the life cycle assessment (LCA) method. The environmental effects of MICP technology are evaluated from the perspectives of resource consumption and environmental impact. The results show that for each tonne of calcium carbonate produced by MICP technology, 1.8 t standard coal is consumed and 3.4 t CO2 is produced, among which 80.4% of the carbon emissions and 96% of the energy consumption come from raw materials. Comparing using MICP with cement, lime, and sintered brick, the current MICP application process consumes less non-renewable resources but has a greater environmental impact. The major environmental impact that MICP has is the production of smoke and ash, with secondary impacts being global warming, photochemical ozone creation, acidification, and eutrophication. In five potential application scenarios of MICP, including concrete, sintered brick, lime mortar, mine cemented backfill, and foundation reinforcement, the carbon emissions of MICP are 3 to 7 times greater than the emissions of traditional technologies. The energy consumption is 15 to 23 times. Based on the energy consumption and carbon emissions characteristics of MICP technology at the current condition, suggestions are given for the future research of MICP.


2021 ◽  
Vol 228 ◽  
pp. 02003
Author(s):  
Phatcharapron Sukkanta ◽  
Krittaphas Mongkolkoldhumrongkul

Climate change affects all regions around the world, so efforts to minimize the environmental impacts of climate change have high importance. The aim of this study is to evaluate the environmental impacts on the production of heaven mushroom product at the Ban Tai Khod community in Rayong, Thailand. In this study, cradle to gate was selected as the system boundary and functional unit from the life cycle assessment method. The results found that the process of building a mushroom house has the highest greenhouse gas emissions of 1, 496.609 kgCO2eq. The mushroom cubes mixing process has the highest energy consumption throughout the production process, requiring an energy consumption of 5.595 kWh. The greenhouse gas is released amount 3, 588.362 kgCO2eq. throughout this process. Additionally, the payback period of the heaven mushroom product is 0.92 years.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2472
Author(s):  
Karel Struhala ◽  
Milan Ostrý

Contemporary research stresses the need to reduce mankind’s environmental impacts and achieve sustainability. One of the keys to this is the construction sector. New buildings have to comply with strict limits regarding resource consumption (energy, water use, etc.). However, they make up only a fraction of the existing building stock. Renovations of existing buildings are therefore essential for the reduction of the environmental impacts in the construction sector. This paper illustrates the situation using a case study of a rural terraced house in a village near Brno, Czech Republic. It compares the life-cycle assessment (LCA) of the original house and its proposed renovation as well as demolition followed by new construction. The LCA covers both the initial embodied environmental impacts (EEIs) and the 60-year operation of the house with several variants of energy sources. The results show that the proposed renovation would reduce overall environmental impacts (OEIs) of the house by up to 90% and the demolition and new construction by up to 93% depending on the selected energy sources. As such, the results confirm the importance of renovations and the installation of environmentally-friendly energy sources for achieving sustainability in the construction sector. They also show the desirability of the replacement of inefficient old buildings by new construction in specific cases.


Energy ◽  
2020 ◽  
Vol 204 ◽  
pp. 117961 ◽  
Author(s):  
Yigang Liu ◽  
Guoxuan Li ◽  
Zhengrun Chen ◽  
Yuanyuan Shen ◽  
Hongru Zhang ◽  
...  

2014 ◽  
Vol 599 ◽  
pp. 324-327 ◽  
Author(s):  
Jia Ping Cui ◽  
Yu Liu ◽  
Zhi Hong Wang ◽  
Li Li Zhao ◽  
Fei Fei Shi ◽  
...  

The environmental impacts of cement production using two pre-drying processes, i.e., coal-fired pre-drying process and pre-drying process by waste heat from kiln tail process were analyzed and compared through life cycle assessment (LCA). The results show that the energy consumption, GWP, AP, POCP, HT and EP of pre-drying process by waste heat from kiln tail are about 1%, 2%, 5.2%, 5% ,3.5% and 3.8% lower than coal-fired process; therefore the application of pre-drying process by waste heat from kiln tail has obvious environmental benefits.


2021 ◽  
Author(s):  
Kristína Kováčiková ◽  
◽  
Antonín Kazda

The paper is focused on the assessment of the environmental impacts of transport infrastructure and individual types of transport using the life cycle assessment method. The paper contains a description of the basic terminology of the problem related to transport, the environment and methods of environmental impact assessment. The paper contains analysis on monitoring carbon dioxide emissions from a global perspective as well as from a regional perspective focused on Slovakia. The aim of the paper is to create a proposal for the assessment of environmental impacts of transport infrastructure, in the form of specification of areas of assessment for selected types of transport with a focus on carbon dioxide emissions. Using the knowledge and principles of the life cycle method, a proposal for relevant indicators and a proposal for a comprehensive assessment of the impacts of selected types of transport, focused on carbon dioxide emissions, is created in the paper


2017 ◽  
Vol 4 (2) ◽  
Author(s):  
Edilberto Llanes Cedeño

Los procesos de generación de electricidad a partir de combustibles fósiles son fuentes de contaminación ambiental, siendo una preocupación actual de los países en desarrollo. El objetivo del presente trabajo fue evaluar el impacto ambiental de la generación distribuida de electricidad en una central de 110 kV por medio del Análisis del Ciclo de Vida para la determinación de mejoras en el proceso. El Análisis del Ciclo de Vida (ACV) se realiza de acuerdo con los requisitos establecidos en la NC ISO 14040: 2009, utilizando el Eco-indicador 99 del software Sima Pro 7.1. Los impactos ambientales se evalúan a partir de un análisis de inventario en cada una de las etapas del proceso, contabilizando las entradas y salidas de materias primas, energía y emisiones al aire, agua y suelo, para lo cual se realiza un diagrama de flujo del proceso. A partir del análisis de los flujos, se determinó que los parámetros condenatorios en el caso de los efluentes, sólo se cumple para el pH y la conductividad eléctrica, en el caso de las emisiones al aire se viola con el NO2 y SO2. Los resultados muestran que la etapa de mayor contribución se concentra en el área de generación y los productos más agresivos al ambiente son el consumo de fuel oil (80 % para la salud humana, 53 % para el ecosistema y para los recursos naturales 95 %) y el producto residual de la limpieza de los materiales de explotación (en el caso del ecosistema 35 %). Abstract The electricity generation process from fossil fuels its source of environmental pollution, being a current concern at developing countries. The objective of the present work was to evaluate the environmental impact of the distributed electricity generation in an 110 kV oil fuel power station using the Life Cycle Assessment method to determinate improvements in the process. The Life Cycle Assessment (LCA) was perform according to the requirements established in the NC ISO 14040: 2009, using Eco-indicator 99 with software Sima Pro 7.1. The environmental impacts were evaluate starting from an inventory analysis in each stage of the process, accounting the inputs and outputs of raw materials, energy and emissions to the air, water and soil; a flow diagram of the process was generated for the assessment.  From the analysis of the flows, it was determined that the condemnatory parameters in the case of effluents, is only met for the pH and electrical conductivity, in the case of air emissions is violated with on the NO2 and SO2. The results, show that the stage with the greatest contribution is concentrated in the generation area, and the most aggressive products to the environment are the consumption of fuel oil (human health 80 %, ecosystem 53 % and natural resources 95 %) and the residual product of the cleaning of the exploitation materials (35 % in the case of the ecosystem).  


2021 ◽  
Vol 13 (21) ◽  
pp. 11682
Author(s):  
Martin Nwodo ◽  
Chimay Anumba

The relevance of exergy to the life cycle assessment (LCA) of buildings has been studied regarding its potential to solve certain challenges in LCA, such as the characterization and valuation, accuracy of resource use, and interpretation and comparison of results. However, this potential has not been properly investigated using case studies. This study develops an exergy-based LCA method and applies it to three case-study buildings to explore its benefits. The results provide evidence that the theoretical benefits of exergy-based LCA as against a conventional LCA can be achieved. These include characterization and valuation benefits, accuracy, and enabling the comparison of environmental impacts. With the results of the exergy-based LCA method in standard metrics, there is now a mechanism for the competitive benchmarking of building sustainability assessments. It is concluded that the exergy-based life cycle assessment method has the potential to solve the characterization and valuation problems in the conventional life-cycle assessment of buildings, with local and global significance.


2019 ◽  
Vol 11 (20) ◽  
pp. 5628 ◽  
Author(s):  
Jan Lindner ◽  
Horst Fehrenbach ◽  
Lisa Winter ◽  
Judith Bloemer ◽  
Eva Knuepffer

In this article, the authors propose an impact assessment method for life cycle assessment (LCA) that adheres to established LCA principles for land use-related impact assessment, bridges current research gaps and addresses the requirements of different stakeholders for a methodological framework. The conservation of biodiversity is a priority for humanity, as expressed in the framework of the Sustainable Development Goals (SDGs). Addressing biodiversity across value chains is a key challenge for enabling sustainable production pathways. Life cycle assessment is a standardised approach to assess and compare environmental impacts of products along their value chains. The impact assessment method presented in this article allows the quantification of the impact of land-using production processes on biodiversity for several broad land use classes. It provides a calculation framework with degrees of customisation (e.g., to take into account regional conservation priorities), but also offers a default valuation of biodiversity based on naturalness. The applicability of the method is demonstrated through an example of a consumer product. The main strength of the approach is that it yields highly aggregated information on the biodiversity impacts of products, enabling biodiversity-conscious decisions about raw materials, production routes and end user products.


Sign in / Sign up

Export Citation Format

Share Document