Mechanical Characteristics of Inorganic Binder Stabilized Iron Tailings

2014 ◽  
Vol 508 ◽  
pp. 173-176
Author(s):  
Hong Bin Li ◽  
Fei Zhao ◽  
Bao Kuan Ning

As the largest solid waste in China, iron tailings have brought a huge impact and potential safety hazard to resources, environment and land. In this paper, using the stress-strain controlled soil mechanics tri-axial apparatus, the author researched the mechanics performance of the cement stabilized iron tailings in the laboratory. The result shows: Along with the increase of the cement dosage, stabilized material strength has improved significantly; Under the confining pressure from 300kPa to 500kPa, the increase of confining pressure is proportional to the strength of stabilized material. Moreover, lower cement content (3%-5%) of stabilized material, its stress-strain curve is similar to those of clayey soil, it has clear plastic yield characteristics; on the contrary, higher dosage of cement stabilized material (7%-9%), the plastic reduced and strength increased. Keywords: cement stabilized iron tailings; cement dosage; stress-strain curve; strength; confining pressure

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7414
Author(s):  
Youliang Chen ◽  
Peng Xiao ◽  
Xi Du ◽  
Suran Wang ◽  
Zhoulin Wang ◽  
...  

Based on Lemaitre’s strain equivalence hypothesis theory, it is assumed that the strength of acid-etching rock microelements under the coupling effect of temperature and confining pressure follows the Weibull distribution. Under the hypothesis that micro-element damage meets the D-P criterion and based on continuum damage mechanics and statistical theory, chemical damage variables, thermal damage variables and mechanical damage variables were introduced in the construction of damage evolution equations and constitutive models for acid-etching rocks considering the coupled effects of temperature and confining pressure. The required model parameters were obtained by theoretical derivation, and the model was verified based on the triaxial compression test data of granite. Comparing the experimental stress-strain curve with the theoretical stress-strain curve, the results show that they were in good agreement. By selecting reasonable model parameters, the damage statistical constitutive model can accurately reflect the stress-strain curve characteristics of rock in the process of triaxial compression. The comparison between the experimental and theoretical results also verifies the reasonableness and reliability of the model. This model provides a new rock damage statistical constitutive equation for the study of rock mechanics and its application in engineering, and has certain reference significance for rock underground engineering.


2011 ◽  
Vol 261-263 ◽  
pp. 1234-1238
Author(s):  
Rui Hong Wang ◽  
Yu Zhou Jiang ◽  
Jing Guo ◽  
Shi Yi Wen

For geotechnical engineering, it has great significance to research the mechanical characteristics of rock mass under three dimensional stresses. Through triaxial compression failure test, the characteristics of stress-strain curve and deformation of red sandstone from Sichuan under different confining pressures has been analyzed. The results show that: with the increment of confining pressure, the failure mode of rock mass changes from brittle failure to ductile failure gradually, and an obvious yield platform appears near the peak strength of stress-strain curve; the elastic modulus, deformation modulus, peak strain and residual strain of rock sample increase with the increment of confining pressure, the elastic modulus and deformation modulus are not a fixed value, and the relation between deformation parameter and confining pressure can be fit through quadratic curve.


Author(s):  
Jeffrey A. Kornuta ◽  
Nicoli M. Ames ◽  
Mary W. Louie ◽  
Peter Veloo ◽  
Troy Rovella

The Pipeline and Hazardous Materials Safety Administration (PHMSA) Notice of Proposed Rulemaking (NPRM), with Docket No. PHMSA-2011-0023, substantially revises 49 CFR Part 191 and 192. Notable among these changes was the addition of §192.607, verification of pipeline material. This section calls for the verification of material properties of pipe and fittings located in either high consequence areas, class 3, or class 4 locations where traceable, verifiable, and complete records do not exist. Material properties include grade (yield strength, YS, and ultimate tensile strength, UTS) and chemical composition. The proposed regulations include an independent third-party validation for non-destructive testing (NDT) methods to determine material strength and require an accuracy of within ±10% of an actual strength value. Among the NDT technologies currently available to pipeline operators to estimate material strength is instrumented indentation testing (IIT). IIT is based on the principal that there exists a relationship between the indentation response of a material and its stress-strain curve. The indentation response is measured during the IIT process whereby an indenter is sequentially forced into the material during testing. The link between the indentation response and the material stress-strain curve is established often through the use of iterative Finite Element Analysis (FEA). The IIT vendor’s proprietary software performs this calculation, converting force-displacement measurements into an estimate of YS and UTS. In this study we extracted force-displacement data from IIT performed using FEA on an idealized steel. This data was then coupled with literature algorithms developed at Seoul National University (Kwon et al.). Parametric sensitivity analysis was then performed on estimated YS with respect to the algorithm parameters. Preliminary results indicate that while variations in the indenter constant, ω, used to estimate surface deformation do not significantly alter the predicted UTS or YS, the sensitivity to deviations in the empirical constant, Ψ, relating normal load to representative stress was more pronounced due to an effect on the calculated power-law constant, K. PHMSA’s NPRM accuracy requirements for NDT to establish yield and tensile strength should be driven by a rigorous understanding of material inhomogeneities, uncertainties in actual tensile strength determination, experimental uncertainty, and modeling uncertainties. The analysis performed in this paper provides part of this rigorous framework to establish realistic accuracy requirements for NDT that must drive federal rulemaking. In addition, this research highlights the need for pipeline operators to establish controls on the algorithms adopted by commercial NDT vendors.


SIMULATION ◽  
2021 ◽  
pp. 003754972110315
Author(s):  
B Girinath ◽  
N Siva Shanmugam

The present study deals with the extended version of our previous research work. In this article, for predicting the entire weld bead geometry and engineering stress–strain curve of the cold metal transfer (CMT) weldment, a MATLAB based application window (second version) is developed with certain modifications. In the first version, for predicting the entire weld bead geometry, apart from weld bead characteristics, x and y coordinates (24 from each) of the extracted points are considered. Finally, in the first version, 53 output values (five for weld bead characteristics and 48 for x and y coordinates) are predicted using both multiple regression analysis (MRA) and adaptive neuro fuzzy inference system (ANFIS) technique to get an idea related to the complete weld bead geometry without performing the actual welding process. The obtained weld bead shapes using both the techniques are compared with the experimentally obtained bead shapes. Based on the results obtained from the first version and the knowledge acquired from literature, the complete shape of weld bead obtained using ANFIS is in good agreement with the experimentally obtained weld bead shape. This motivated us to adopt a hybrid technique known as ANFIS (combined artificial neural network and fuzzy features) alone in this paper for predicting the weld bead shape and engineering stress–strain curve of the welded joint. In the present study, an attempt is made to evaluate the accuracy of the prediction when the number of trials is reduced to half and increasing the number of data points from the macrograph to twice. Complete weld bead geometry and the engineering stress–strain curves were predicted against the input welding parameters (welding current and welding speed), fed by the user in the MATLAB application window. Finally, the entire weld bead geometries were predicted by both the first and the second version are compared and validated with the experimentally obtained weld bead shapes. The similar procedure was followed for predicting the engineering stress–strain curve to compare with experimental outcomes.


2012 ◽  
Vol 27 (2) ◽  
pp. 318-328 ◽  
Author(s):  
Svetlana Borodulina ◽  
Artem Kulachenko ◽  
Mikael Nygårds ◽  
Sylvain Galland

Abstract We have investigated a relation between micromechanical processes and the stress-strain curve of a dry fiber network during tensile loading. By using a detailed particle-level simulation tool we investigate, among other things, the impact of “non-traditional” bonding parameters, such as compliance of bonding regions, work of separation and the actual number of effective bonds. This is probably the first three-dimensional model which is capable of simulating the fracture process of paper accounting for nonlinearities at the fiber level and bond failures. The failure behavior of the network considered in the study could be changed significantly by relatively small changes in bond strength, as compared to the scatter in bonding data found in the literature. We have identified that compliance of the bonding regions has a significant impact on network strength. By comparing networks with weak and strong bonds, we concluded that large local strains are the precursors of bond failures and not the other way around.


2012 ◽  
Vol 594-597 ◽  
pp. 512-515
Author(s):  
Zheng Rong Zhao ◽  
Hong Xia Yang

Combined with the silty soil characteristics of the Yellow River alluvial plain and the subgrade filling of Ji-He expressway, the paper discusses silty soil, stabilized silty soil strength and stress-stain characteristics through the indoor triaxial shear test. The results show that the remodeling silty soil has obvious peak, brittle failure, low residual strength after being destroyed and the stress-strain curve shows a softening type in confining pressure 100kPa lower stress level. In the confining pressure 400kPa higher stress level, soil samples peak is not obvious,mainly plastic failure and the stress-strain curve is close to a hardening type. Compared to mixed with 8% lime, stabilized silty soil of mixed with 4% cement and 4% lime shows that the partial stress peak is more obvious when destroyed and the residual strength is drastically reduced and more incline to brittle failure. In different the age, compared to mixed with 8% lime, stabilized silty soil of mixed with 4% cement and 4% lime shows that internal friction angle becomes larger and cohesion improves gradually whose amplitude is much larger than internal friction angle. Therefore, a more effective way to stabilize the silty soil of the Yellow River alluvial plain is to select silty soil mixed with 4% cement and 4% lime.


1966 ◽  
Vol 1 (4) ◽  
pp. 331-338 ◽  
Author(s):  
T C Hsu

Three different definitions of the yield point have been used in experimental work on the yield locus: proportional limit, proof strain and the ‘yield point’ by backward extrapolation. The theoretical implications of the ‘yield point’ by backward extrapolation are examined in an analysis of the loading and re-loading stress paths. It is shown, in connection with experimental results by Miastkowski and Szczepinski, that the proportional limit found by inspection is in fact a point located by backward extrapolation based on a small section of the stress-strain curve, near the elastic portion of the curve. The effect of different definitions of the yield point on the shape of the yield locus and some considerations for the choice between them are discussed.


2016 ◽  
Vol 92 ◽  
pp. 107-118 ◽  
Author(s):  
Kunmin Zhao ◽  
Limin Wang ◽  
Ying Chang ◽  
Jianwen Yan

Sign in / Sign up

Export Citation Format

Share Document