Drive Characteristic Analysis and Test System Design for Water Hydraulic Artificial Muscle

2014 ◽  
Vol 511-512 ◽  
pp. 737-742
Author(s):  
Zeng Meng Zhang ◽  
Yong Jun Gong ◽  
Jiao Yi Hou

Performance tests and drive experiments play an important role in researches on water hydraulic artificial muscles. A test system is designed to analyze the drive characteristic of the developed water hydraulic artificial muscle. Through simulation getting main parameters, the hydraulic circuit to regulate the pressure of the water hydraulic artificial muscle and a proportional control loading system are built. The pressure control and drawing force regulation in the loading system for muscles with different diameter and length are provided by the designed test system. The experimental results show that the muscle pressure can be adjusted stably and the contraction of the tested muscle can be measured under different preset drawing forces. The test system for the water hydraulic artificial muscle is useful in the researches on drive characteristic and control system of the water hydraulic artificial muscle.

2014 ◽  
Vol 889-890 ◽  
pp. 488-492
Author(s):  
Zeng Meng Zhang ◽  
Jiao Yi Hou ◽  
Zheng Wen Sun ◽  
Yong Jun Gong ◽  
Jian Miao

Driving processes and characteristics are different between the water hydraulic artificial muscle and pneumatic artificial muscle due to the difference of work media employed in muscles. An appropriative hydraulic circuit was designed to control the pressure of the water hydraulic artificial muscle and the performance of this system was analyzed. An AMESim model of the control system was built and the dynamic characteristics are analyzed with various parameters of the hydraulic circuit and various loads by simulation. The results show that the performance of the water hydraulic control valve should agree with the dimension of the water hydraulic artificial muscle. The rated flow rate of the water hydraulic valves can be selected increasingly while the load mass is low. Meanwhile, the overshoot is generated and enlarged along with the increases of the flow rate and load mass. These contribute to the improvements of designs and researches on control systems of water hydraulic artificial muscles.


2007 ◽  
Vol 19 (6) ◽  
pp. 619-628 ◽  
Author(s):  
Toshiro Noritsugu ◽  
◽  
Daisuke Sasaki ◽  
Masafumi Kameda ◽  
Atsushi Fukunaga ◽  
...  

As society ages and birth rates fall, the dropping number of caregivers for an increasingly elderly population is expected to become a serious problem, raising the need for devices to assist those having difficulty in leading independent lives. These devices must be used near or directly on their users, making safety and user-friendliness equally important. This raises the need for safe, user-friendly actuators that are compact, lightweight, and appropriately soft. The pneumatic rubber artificial muscle meets this requirement. We developed a wearable power assist device that aids people in standing and uses the McKibben pneumatic rubber artificial muscle. We discuss its structure, basic features, and control. We also present an example of its application to rehabilitation.


2019 ◽  
Vol 256 ◽  
pp. 01005
Author(s):  
Feng Ning ◽  
Yingli Chang ◽  
Jingze Wang

Pneumatic artificial muscles (PAMs) can offer excellent force-to-weight ratios and act as shape-changing actuator under injecting the actuation fluid into their bladders. PAMs could be easily utilized for morphing structures due to their millimeter-scale diameter. The pressurized PAM can serve not only as artificial muscle actuator which obtains contraction deformation capability but also as a spring system with variable stiffness. In this study, the stiffness behaviors of pressurized PAMs and a variable stiffness structure are investigated. By taking advantage of the designed PAMs which was conducted by the non- linear quasi-static model, significant changes in the spring stiffness can be achieved by air pressure control. A case study is presented to explore the potential behavior of a structure with circular permutation PAMs. The structure used in this case consists of sixteen PAMs with circular homogeneous distribution and a circular supporter with sixteen slide way runners. The stiffness of presented structure can vary flexibly in wide range through controlling the air pressure levels and slide deformation respectively.


2014 ◽  
Vol 541-542 ◽  
pp. 737-741
Author(s):  
Xiang Lu ◽  
Yan Jie Luo ◽  
Yun Fei Mai

This paper is focused on the study of pressure shocks caused by inertia of automobile steering gear. The system transfer function mathematical model was established. In order to meet the system technical specification, a feed-forward compensator was designed to eliminate the interference force; a fuzzy PID controller was devised to accelerate responding speed, eliminating oscillation and improve the dynamic performance. The simulation results indicate that the negative effect of inertia can be well overcome and passive loading system works steadily and satisfies technical requirements.


2019 ◽  
Vol 16 (3) ◽  
pp. 172988141985398
Author(s):  
Dayong Ning ◽  
Jinkai Che ◽  
Zengmeng Zhang ◽  
Hao Tian ◽  
Jiaoyi Hou ◽  
...  

Because of the high force–weight ratio of water hydraulic artificial muscle and its high compatibility with an underwater environment, the water hydraulic artificial muscle has received increasing attention due to its potential uses in marine engineering applications. The master–slave anthropopathic joint actuated by water hydraulic artificial muscles is light and small, and it has good maneuverability for underwater manipulators. However, the control methodologies for water hydraulic artificial muscle joint have not been thoroughly explored to date. This article introduces a master–slave control system of isomorphic artificial muscle joints. The water hydraulic artificial muscle joint acts as a slave joint working under the sea, and the pneumatic artificial muscle joint acts as a master joint that is operated by people. The rotation angle signal of the pneumatic artificial muscle joint is fed back as the input to regulate the rotation angle of the water hydraulic artificial muscle joint through a proportional–integral–derivative control. Meanwhile, the torque of the pneumatic artificial muscle joint is controlled by a proportional–integral–derivative controller based on the feedback of a two-force-transducer system in the water hydraulic artificial muscle joint as input. Therefore, the operator can control the movement and feel the load of the water hydraulic artificial muscle slave joint. Master–slave control experiments were performed, and the position/torque control results were analyzed using various loads and torque gains. This study contributes to the design and control of an anthropopathic underwater manipulator.


2014 ◽  
Vol 616 ◽  
pp. 77-84
Author(s):  
Radoslav Kreheľ ◽  
Ľuboslav Straka

Article discusses the diagnosis and control of the operation of artificial muscle with the ability to predict a steady state actuator arm. This can prevent disrepair and provides diagnostics dynamics shoulders. The article contains information about the function and basic properties of the actuator based on pneumatic artificial muscles. The article presents the measurement results of the response of the actuator arm displacement depending on the input pulse. This dependence enables artificial muscles to be better adjusted to the needs of a practical operation.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668500 ◽  
Author(s):  
Feilong Jiang ◽  
Guoliang Tao ◽  
Qingwei Li

Most robots that are actuated by antagonistic pneumatic artificial muscles are controlled by various control algorithms that cannot adequately imitate the actual muscle distribution of human limbs. Other robots in which the distribution of pneumatic artificial muscle is similar to that of human limbs can only analyze the position of the robot using perceptual data instead of rational knowledge. In order to better imitate the movement of a human limb, the article proposes a humanoid lower limb in the form of a parallel mechanism where muscle is unevenly distributed. Next, the kinematic and dynamic movements of bionic hip joint are analyzed, where the joint movement is controlled by an observer-based fuzzy adaptive control algorithm as a whole rather than each individual pneumatic artificial muscle and parameters that are optimized by a neural network. Finally, experimental results are provided to confirm the effectiveness of the proposed method. We also document the role of muscle in trajectory tracking for the piriformis and musculi obturator internus in isobaric processes.


Author(s):  
Zengmeng Zhang ◽  
Jinkai Che ◽  
Peipei Liu ◽  
Yunrui Jia ◽  
Yongjun Gong

Compared with pneumatic artificial muscles (PAMs), water hydraulic artificial muscles (WHAMs) have the advantages of high force/weight ratio, high stiffness, rapid response speed, large operating pressure range, low working noise, etc. Although the physical models of PAMs have been widely studied, the model of WHAMs still need to be researched for the different structure parameters and work conditions between PAMs and WHAMs. Therefore, the geometry and the material properties need to be considered in models, including the wall thickness of rubber tube, the geometry of ends, the elastic force of rubber tube, the elongation of fibers, and the friction among fiber strands. WHAMs with different wall thickness and fiber materials were manufactured, and static characteristic experiments were performed when the actuator is static and fixed on both ends, which reflects the relationship between contraction force and pressure under the different contraction ratio. The deviations between theoretical values and experimental results were analyzed to investigate the effect of each physical factor on the modified physical model accuracy at different operating pressures. The results show the relative error of the modified physical model was 7.1% and the relative error of the ideal model was 17.4%. When contraction ratio is below 10% and operating pressure is 4 MPa, the wall thickness of rubber tube was the strongest factor on the accuracy of modified model. When the WHAM contraction ratio from 3% to 20%, the relative error between the modified physical model and the experimental data was within ±10%. Considering the various physical factors, the accuracy of the modified physical model of WHAM is improved, which lays a foundation of non-linear control of the high-strength, tightly fiber-braided and thick-walled WHAMs.


2010 ◽  
Vol 136 ◽  
pp. 153-157
Author(s):  
Yu Hong Du ◽  
Xiu Ming Jiang ◽  
Xiu Ren Li

To solve the problem of detecting the permeability of the textile machinery, a dedicated test system has been developed based on the pressure difference measuring method. The established system has a number of advantages including simple, fast and accurate. The mathematical model of influencing factors for permeability is derived based on fluid theory, and the relationship of these parameters is achieved. Further investigations are directed towards the inherent characteristics of the control system. Based on the established model and measuring features, an information fusion based clustering control system is proposed to implement the measurement. Using this mechanical structure, a PID control system and a cluster control system have been developed. Simulation and experimental tests are carried out to examine the performance of the established system. It is noted that the clustering method has a high dynamic performance and control accuracy. This cluster fusion control method has been successfully utilized in powder metallurgy collar permeability testing.


2014 ◽  
Vol 599-601 ◽  
pp. 900-903
Author(s):  
Quan Wang ◽  
Wei Ping Liu ◽  
Yi Jin ◽  
Bin He Fu

This paper presented the scenario of the IDCTMV Human-Machine Ergonomics test system with the programming idea of the modularization. Based on LabVIEW, the IDCTMV simulated test software and subjective evaluation software were designed and developed. The subjective evaluation results and operation performance data including the reaction time of crews, the rate of errors, and the rate of over reports were tested by the simulation of the integrated display and control terminal for the typical operation procedure, which solved the problems of lacking test methods for the study of the IDCTMV Human-Machine Ergonomics.


Sign in / Sign up

Export Citation Format

Share Document