Analysis and Simulation on Drive Characteristic of High-Strength Water Hydraulic Artificial Muscle

2014 ◽  
Vol 889-890 ◽  
pp. 488-492
Author(s):  
Zeng Meng Zhang ◽  
Jiao Yi Hou ◽  
Zheng Wen Sun ◽  
Yong Jun Gong ◽  
Jian Miao

Driving processes and characteristics are different between the water hydraulic artificial muscle and pneumatic artificial muscle due to the difference of work media employed in muscles. An appropriative hydraulic circuit was designed to control the pressure of the water hydraulic artificial muscle and the performance of this system was analyzed. An AMESim model of the control system was built and the dynamic characteristics are analyzed with various parameters of the hydraulic circuit and various loads by simulation. The results show that the performance of the water hydraulic control valve should agree with the dimension of the water hydraulic artificial muscle. The rated flow rate of the water hydraulic valves can be selected increasingly while the load mass is low. Meanwhile, the overshoot is generated and enlarged along with the increases of the flow rate and load mass. These contribute to the improvements of designs and researches on control systems of water hydraulic artificial muscles.

2013 ◽  
Vol 393 ◽  
pp. 532-537 ◽  
Author(s):  
Abdul Nasir ◽  
Tetsuya Akagi ◽  
Shujiro Dohta ◽  
Ayumu Ono ◽  
Yusuke Masago

Recently, power assisted nursing care systems have received much attention and those researches have been done actively. In such a control system, an actuator and a control valve are mounted on the human body. Designing the system, the size and weight of the valve become serious concerns. The purpose of our study is to develop a small-sized, lightweight and low-cost servo valve for precise control using wearable pneumatic actuators. In this study, a low-cost wearable servo valve that can control the output flow rate by changing the twisted angle of the buckled tube in the servo valve is proposed and tested. The position control system of McKibben rubber artificial muscle using tested valve and embedded controller is also proposed and tested. As a result, we confirmed that the tested servo valve can control the flow rate in both supply and exhaust in an analog way. In addition, the estimated cost of the proposed valve can be reduced about 100 times cheaper (10 US Dollar) compared with the typical servo valve.


2021 ◽  
Vol 2021 (10) ◽  
pp. 22-26
Author(s):  
Ol'ga Shirobokova ◽  
Yuriy Kisel' ◽  
Dmitriy Bezik

The technology of non-galvanized ironing of parts in the electrolyte flow with simultaneous hydromechanical activation of the plated surface is proposed, its advantages over the traditional type of coating are shown. The technological process of coating hydraulic control valve spools has been developed. The technological process of restoring spools consists of the following operations: preliminary surface preparation (mechanical treatment), degreasing, washing, anodic treatment, electrodeposition and final mechanical treatment. The designs of the installation and the electrochemical cell for ironing hydraulic control valve spools, providing optimal hydrodynamic conditions when applying coatings on worn surfaces, are proposed. Optimal modes and composition of ironing electrolyte have been defined, providing a high rate of precipitation growth (1.5...3 mm/h), adhesion strength and wear resistance of coatings. Bench and field tests of hydraulic valves with restored spools were performed, which confirmed the results of laboratory studies and the high efficiency of the proposed technology.


Author(s):  
Futoshi Yoshida ◽  
Shimpei Miyakawa ◽  
Shouichiro Iio

Water hydraulic system using tap water as working fluid is a new driving method which provides high speed, high-output control, while providing safety, hygiene, and ecofriendliness. Its applicable markets widely range from food, health, pharmaceuticals, cosmetics, semiconductors, beverages, to energy industries. Applications of the water hydraulic technology differ from those of its oil counterpart in heavy industries. This paper is aimed at analytically considering the stability of systems that use tap water as the working fluid. We studied a comprehensive system, including a water hydraulic control valve, a cylinder, and piping for connecting these components, to determine the transfer function of the entire system that has three elements: a control valve; piping and cylinder; and a compensation circuit. Based on the determined function, we reviewed the relationship among natural frequencies of the system, including the control valve and piping, and examined the effect of the control valve and cylinder on the stability of the entire system according to the Hurwitz stability criterion. This gave us a design guideline about the compensation circuit that stabilizes the system by adjusting the natural frequency of the water hydraulic proportional control valve according to the natural frequencies of the piping and cylinder.


Author(s):  
Miika Paloniitty ◽  
Matti Linjama

Digital hydraulic control valve technology has shown its strengths in providing reliable, leak-tight and high performance valve control regardless of the pressure medium used, oil or water. This is enabled by the intelligent use of robust on/off seat valves. However, the availability of these valves for water hydraulics is limited, especially that of compact valves, which are needed for digital valve systems. Thus, with the aim to create a compact digital water hydraulic valve system, this paper presents the development process of a water hydraulic miniature valve. The starting point for the development is a previously developed miniature valve for oil hydraulics. Experimental results with the new prototype show that good performance can be achieved for the miniature valve even with using stainless steel materials. This enables high-performance digital water hydraulic control.


2011 ◽  
Vol 422 ◽  
pp. 257-261
Author(s):  
Zeng Meng Zhang ◽  
Yong Jun Gong

Due to the problems about Lubrication and sealing in water hydraulics, the poor performance, large leakage, extreme requirements of processing, high cost and poor anti-pollution properties exist in water hydraulic servo or proportional valves of spool structure and analogue control. A better seal is provided by the structure of the poppet valve comparing to the spool valve, however, poorer linearity and control accuracy accompanying inevitably. Aiming at improving the control performance of poppet valve, the design of the multi-digit numerical control valve is analyzed in this paper. The novel design using ball seat valves for digital bits is proposed to ensure enough seal ability and lower the cost. The simulation model of the multi-digit numerical control valve is built in AMESim software and the results show high linearity in flow control. However, large overshoot and oscillation encounter during the switching of the digits. Especially the switching process of the high digital bits requires to be regulated to reduce the large overshooting. The adjustment of the spring in the sensitive chamber of the bit valve can decrease the overshoot and improve the stability. These above contribute to the improvement of the control performance of water hydraulic control valves and applications of water hydraulics in the industry.


2014 ◽  
Vol 511-512 ◽  
pp. 737-742
Author(s):  
Zeng Meng Zhang ◽  
Yong Jun Gong ◽  
Jiao Yi Hou

Performance tests and drive experiments play an important role in researches on water hydraulic artificial muscles. A test system is designed to analyze the drive characteristic of the developed water hydraulic artificial muscle. Through simulation getting main parameters, the hydraulic circuit to regulate the pressure of the water hydraulic artificial muscle and a proportional control loading system are built. The pressure control and drawing force regulation in the loading system for muscles with different diameter and length are provided by the designed test system. The experimental results show that the muscle pressure can be adjusted stably and the contraction of the tested muscle can be measured under different preset drawing forces. The test system for the water hydraulic artificial muscle is useful in the researches on drive characteristic and control system of the water hydraulic artificial muscle.


2017 ◽  
Vol 6 (4) ◽  
pp. 194-201
Author(s):  
Бухтояров ◽  
Leonid Bukhtoyarov ◽  
Лысыч ◽  
Mikhail Lysych ◽  
Туровский ◽  
...  

The authors offer an automated drive design based on stepper motor which is mounted directly on the hydraulic control valve with manual control. This approach eliminates rework most of the hydraulic system, which significantly reduces the cost and the complexity of the process of modernization. When the drive was planning to use the medium-aided design SolidWorks. Within the theoretical research car-ried out kinematic and dynamic issledovaniyaprotsessa with joystick control. For this purpose calculated 3D-drive model with a directional control valve and the application for engineering calculations Solid-Works Simulation.


2020 ◽  
pp. 77-78

The use of ultra-high molecular weight polyethylene (UHMW PE) for the manufacture of various parts, in particular cuffs for hydraulic drives, is proposed. The properties and advantages of UHMW PE in comparison with other polyethylene materials are considered. Keywords ultra-high molecular weight polyethylene, hydraulic pump, hydraulic motor, hydraulic control valve, hydraulic oil, low temperature. [email protected]


Author(s):  
Zengmeng Zhang ◽  
Jinkai Che ◽  
Peipei Liu ◽  
Yunrui Jia ◽  
Yongjun Gong

Compared with pneumatic artificial muscles (PAMs), water hydraulic artificial muscles (WHAMs) have the advantages of high force/weight ratio, high stiffness, rapid response speed, large operating pressure range, low working noise, etc. Although the physical models of PAMs have been widely studied, the model of WHAMs still need to be researched for the different structure parameters and work conditions between PAMs and WHAMs. Therefore, the geometry and the material properties need to be considered in models, including the wall thickness of rubber tube, the geometry of ends, the elastic force of rubber tube, the elongation of fibers, and the friction among fiber strands. WHAMs with different wall thickness and fiber materials were manufactured, and static characteristic experiments were performed when the actuator is static and fixed on both ends, which reflects the relationship between contraction force and pressure under the different contraction ratio. The deviations between theoretical values and experimental results were analyzed to investigate the effect of each physical factor on the modified physical model accuracy at different operating pressures. The results show the relative error of the modified physical model was 7.1% and the relative error of the ideal model was 17.4%. When contraction ratio is below 10% and operating pressure is 4 MPa, the wall thickness of rubber tube was the strongest factor on the accuracy of modified model. When the WHAM contraction ratio from 3% to 20%, the relative error between the modified physical model and the experimental data was within ±10%. Considering the various physical factors, the accuracy of the modified physical model of WHAM is improved, which lays a foundation of non-linear control of the high-strength, tightly fiber-braided and thick-walled WHAMs.


Sign in / Sign up

Export Citation Format

Share Document