Analysis on Shaft Failure of the Twin Screw Pump

2014 ◽  
Vol 526 ◽  
pp. 253-256
Author(s):  
Jian Sheng Jiang ◽  
Zhi Yong Zhao

Screw pump as kind of displacement pump is suitable for transporting high-viscosity crude oil in a stable operation and high working efficiency. But over the past few years, one oil company has suffered from more screw pump failures which greatly impacted the normal crude oil pipeline delivery operation. Through a deep investigation into two times of shaft rupture incidents, the present paper performs a root cause analysis and provides the corresponding countermeasures.

Author(s):  
Subhash Chandra Agarwal

Due to capacity expansion of one of our refineries located in Western India, there was a need to evacuate additional products. Pipeline, being the most economical, reliable and environment friendly mode of transportation was the obvious choice. Laying a new pipeline would have required making substantial initial capital investment. However, a crude oil pipeline, owned by another oil company, was terminating at the refinery and was not in regular use. It was decided to convert this pipeline to product service. The pipeline was taken on lease, extensively cleaned, tested and successfully converted to product service with necessary hook-up/modifications at both the ends and in-between. The paper covers the experience gathered during the process of conversion of the crude oil pipeline to product service, including modifications carried out in the pipeline system, methodology adopted for cleaning, hydro-testing and commissioning of the system, and the lessons learnt.


2014 ◽  
Vol 887-888 ◽  
pp. 899-902
Author(s):  
Xiao Nan Wu ◽  
Shi Juan Wu ◽  
Hong Fang Lu ◽  
Jie Wan ◽  
Jia Li Liu ◽  
...  

In order to reduce the viscosity of crude oil for transport, we often use the way of heating delivery for high pour point, high wax, and high viscosity oil. Crude oil at high temperature, through long-distance transmission, the temperature and pressure changes on the piping stress greater impact. In this paper, in order to explore the main factor of hot oil pipeline stress and the location of key points, we build the XX hot oil pipeline stress analysis model used CAESAR II software, analysis of the impact of changes in temperature and pressure on piping stress when hot oil pipeline running, draw hot oil pipeline stress distribution, clearly identifies the location of key points of stress concentration, and we have come to that temperature is a major factor in generating pipe stress.


2021 ◽  
Vol 107 ◽  
pp. 122-128
Author(s):  
Aidar Kadyirov ◽  
Julia Karaeva ◽  
Ekaterina Vachagina

The paper presents a mathematical model and the results of numerical calculations of heat transfer processes during the flow of highly viscous crude oil in an oil pipeline. Comparison with literature data is performed. The samples of oil from the field of the Republic of Tatarstan (Russia) that are characterized by high viscosity were considered as crude oil. The influence of air temperature on the temperature distribution in the soil was investigated. The analysis of the distribution of crude oil temperature along the length of the pipeline was carried out.


2011 ◽  
Vol 130-134 ◽  
pp. 3658-3663
Author(s):  
Qian Tang ◽  
Abebe Misganaw ◽  
Xian Zhi Ye ◽  
Yuan Xun Zhang

Screw pump is a special type of rotary positive displacement pump in which the flow through the pumping elements is truly axial. The objective of this study is to develop a numerical solution method for flow analysis of a twin screw pump by using a Single Rotating Reference Frame method with various boundary conditions and rotational speeds of rotor on steady state condition. Flow variable contours and plots were obtained for fluid flow inside a pump subject to pressure inlet and pressure outlet conditions using the numerical control volume method in the commercial package of FLUENT. This work needs for the analysis of flow parameters inside a screw pump in order to achieve optimum design.


2021 ◽  
Vol 18 (1) ◽  
pp. 145-162
Author(s):  
B Butchibabu ◽  
Prosanta Kumar Khan ◽  
P C Jha

Abstract This study aims for the protection of a crude-oil pipeline, buried at a shallow depth, against a probable environmental hazard and pilferage. Both surface and borehole geophysical techniques such as electrical resistivity tomography (ERT), ground penetrating radar (GPR), surface seismic refraction tomography (SRT), cross-hole seismic tomography (CST) and cross-hole seismic profiling (CSP) were used to map the vulnerable zones. Data were acquired using ERT, GPR and SRT along the pipeline for a length of 750 m, and across the pipeline for a length of 4096 m (over 16 profiles of ERT and SRT with a separation of 50 m) for high-resolution imaging of the near-surface features. Borehole techniques, based on six CSP and three CST, were carried out at potentially vulnerable locations up to a depth of 30 m to complement the surface mapping with high-resolution imaging of deeper features. The ERT results revealed the presence of voids or cavities below the pipeline. A major weak zone was identified at the central part of the study area extending significantly deep into the subsurface. CSP and CST results also confirmed the presence of weak zones below the pipeline. The integrated geophysical investigations helped to detect the old workings and a deformation zone in the overburden. These features near the pipeline produced instability leading to deformation in the overburden, and led to subsidence in close vicinity of the concerned area. The area for imminent subsidence, proposed based on the results of the present comprehensive geophysical investigations, was found critical for the pipeline.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2237
Author(s):  
Eder H. C. Ferreira ◽  
Angela Aparecida Vieira ◽  
Lúcia Vieira ◽  
Guilhermino J. M. Fechine

Here, nanocomposites of high-molecular-weight polyethylene (HMWPE) and HMWPE-UHMWPE (80/20 wt.%) containing a low amount of multilayer graphene oxide (mGO) (≤0.1 wt.%) were produced via twin-screw extrusion to produce materials with a higher tribological performance than UHMWPE. Due to the high viscosity of both polymers, the nanocomposites presented a significant concentration of agglomerates. However, the mechanical (tensile) and tribological (volumetric loss) performances of the nanocomposites were superior to those of UHMWPE. The morphology of the nanocomposites was investigated using differential scanning calorimetry (DSC), microtomography, and transmission electron microscopy (TEM). The explanation for these results is based on the superlubricity phenomenon of mGO agglomerates. It was also shown that the well-exfoliated mGO also contained in the nanocomposite was of fundamental importance as a mechanical reinforcement for the polymer. Even with a high concentration of agglomerates, the nanocomposites displayed tribological properties superior to UHMWPE’s (wear resistance up to 27% higher and friction coefficient up to 57% lower). Therefore, this manuscript brings a new exception to the rule, showing that agglomerates can act in a beneficial way to the mechanical properties of polymers, as long as the superlubricity phenomenon is present in the agglomerates contained in the polymer.


2021 ◽  
Vol 1927 (1) ◽  
pp. 012021
Author(s):  
Junjiang Liu ◽  
Liang Feng ◽  
Dake Yang ◽  
Xianghui Li

2021 ◽  
Vol 205 ◽  
pp. 108881
Author(s):  
Xuedong Gao ◽  
Qiyu Huang ◽  
Xun Zhang ◽  
Yu Zhang ◽  
Xiangrui Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document