A Velocity and Transmission Environment Based Handover Algorithm for Heterogeneous Networks

2014 ◽  
Vol 548-549 ◽  
pp. 1359-1362 ◽  
Author(s):  
Chun Liang Yang ◽  
Jian Xin Wang ◽  
Hai Yu ◽  
Quan Kuang ◽  
Joachim Speidel ◽  
...  

Heterogeneous networks have attracted a lot of attention for supporting high data rate and high mobility wireless communications. Since the base station density in heterogeneous networks is much larger than that in homogeneous networks, and the deployment of low power base stations in heterogeneous networks may be unplanned, a mobile user may see a large number of base stations simultaneously. Thus handover management in heterogeneous networks is much more challenging than that in homogeneous networks. In this paper, we address these challenges and propose a heuristic handover algorithm for use in heterogeneous networks. The proposed algorithm uses estimates of user velocity (speed and direction) and the transmission environment to improve the handover performance, i.e., the handover rate and the handover failure rate. Simulation results show that the proposed algorithm performs better than the conventional scheme in typical scenarios of heterogeneous networks.

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4593
Author(s):  
Haejoon Jung ◽  
In-Ho Lee

Due to their high mobility, unmanned aerial vehicles (UAVs) can offer better connectivity by complement or replace with the existing terrestrial base stations (BSs) in the mobile cellular networks. In particular, introducing UAV and millimeter wave (mmWave) technologies can better support the future wireless networks with requirements of high data rate, low latency, and seamless connectivity. However, it is widely known that mmWave signals are susceptible to blockages because of their poor diffraction. In this context, we consider macro-diversity achieved by the multiple UAV BSs, which are randomly distributed in a spherical swarm. Using the widely used channel model incorporated with the distance-based random blockage effects, which is proposed based on stochastic geometry and random shape theory, we investigate the outage performance of the mmWave UAV swarm network. Further, based on our analysis, we show how to minimize the outage rate by adjusting various system parameters such as the size of the UAV swarm relative to the distance to the receiver.


Author(s):  
Nor Adibah Ibrahim ◽  
Tharek Abd Rahman ◽  
Razali Ngah ◽  
Omar Abd Aziz ◽  
Olakunle Elijah

The fifth-generation (5G) network has been broadly investigated by many researchers. The capabilities of 5G include massive system capacity, incredibly high data rates everywhere, very low latency and the most important point is that it is exceptionally low device cost and low energy consumption. A key technology of 5G is the millimeter wave operating at 28 GHz and 38 GHz frequency bands which enable massive MIMO and small cell base station densification. However, there has been public concern associated with human exposure to electromagnetic fields (EMF) from 5G communication devices. Hence, this paper studies the power density of a 5G antenna array that can be used for the indoor base station. The power density is the amount of power or signal strength absorbed by a receiver such as the human body located a distance from the base station. To achieve this, the design of array antennas using CST software at 28 GHz, fabrication and measurement were carried out in an indoor and hallway environment. The measurement processes were set up at IC5G at UTM Kuala Lumpur in which the distance of the transmitter to receiver where 1 m, 4 m, 8 m, and 10 m. In this study, the measured power density is found to be below the set limit by ICNIRP and hence no health implication is feared. Regardless, sufficient act of cautionary has to be applied by those staying close to small cell base stations and more studies are still needed to ensure the safety of use of 5G base stations.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Junpeng Yu ◽  
Hongtao Zhang ◽  
Yuqing Chen ◽  
Yaduan Ruan

In 5G ultradense heterogeneous networks, wireless backhaul, as one of the important base station (BS) resources that affect user services, has attracted more and more attention. However, a user would access to the BS which is the nearest for the user based on the conventional user association scheme, which constrains the network performance improvement due to the limited backhaul capacity. In this paper, using backhaul-aware user association scheme, semiclosed expressions of network performance metrics are derived in ultradense heterogeneous networks, including coverage probability, rate coverage, and network delay. Specifically, all possible access and backhaul links within the user connectable range of BSs and anchor base stations (A-BSs) are considered to minimize the analytical results of outage probability. The outage for the user occurs only when the access link or backhaul link which forms the link combination with the optimal performance is failure. Furthermore, the theoretical analysis and numerical results evaluate the impact of the fraction of A-BSs and the BS-to-user density ratio on network performance metric to seek for a more reasonable deployment of BSs in the practical scenario. The simulation results show that the coverage probability of backhaul-aware user association scheme is improved significantly by about 2× compared to that of the conventional user association scheme when backhaul is constrained.


2014 ◽  
Vol 530-531 ◽  
pp. 662-666 ◽  
Author(s):  
Wei Li ◽  
Er Qing Lu

With the development of Internet technology and communication technology, traditional base station has been unable to meet the demand for high data services. In view of this, we propose the system core with Samsung S3C2440X processor constructs smart home hardware platform and using ADI ADF4602 single-chip, multiband 3G Femtocell transceiver to establish 3G home base stations, designed and realized an embedded gateway server through the house gateway to realize the family appliance equipment remote monitoring. Of software design, focusing on smart home control system, transplantation of embedded operating system uClinux to manage system resources, constructed a complete family gateway hardware and software platform, which can reduce the load of Microcell, improve the whole network capacity, and provide high-speed and high-quality indoor wireless access services.


Author(s):  
Yatendra Singh Bhandari ◽  
Yashwant Singh Chauhan ◽  
Priti Dimri

<p>Heterogeneous Networks are bunch of homogeneous networks base stations grouped together. The term introduced in this research paper Time Efficiency (Te) gives out the information on the heterogeneous networks where most of the data flows in and out. In this paper, a model for evaluating Time Efficiency in heterogeneous network is developed. The common goals of different base stations in a heterogeneous network are towards coverage of area and capability improvement. Base stations in a homogeneous network differs in transmitted power, achievable rate of data, area covered, density of a base station, energy efficiency and time efficiency. To find out the area of most data flow in certain period, Time efficiency can be used as a major factor.</p><p><em> </em></p>


Today most of the next generation wireless communication systems(5G) faces the challenge of supporting the demands for higher data rates growing exponentially and ensuring to provide a stable quality of service (QoS) throughout the network. Over the next 2 years meeting up these requirements need to maximize the capacity of the network by a factor which will multiply it by thousands. Moreover, the most important societal as well as economical concerns include the power usage of data and communication technology industry and pollution mostly energy-related. On 5G two contrary requirements of providing capacity to support higher cellular networks along with consuming less energy needs to be focused upon. Due to the scarcity of spectral sources, a wide consensus can only be achieved by increasing significantly the number of antennas operating per unit area. Here a heterogeneous network named HetNet is analysed, comprising a macro base station (BS) along with several antennas and an overlaid dense tier possessing SCAs(small cell access points)through a wireless backhaul to get data traffic. The SCAs mostly associate with static as well as low mobility user equipment whereas macro BS serve the medium-to-high mobility. This work analyses the methods of the ultra-dense wireless 5G heterogeneous networks considering the interference management along the mm-Wave backhaul links to utilize the spectrum and network densification to operate mm-Wave 5G HetNet. The study reviews several literature works, their drawbacks and developing a joint model by combining base station switch-off technique with interface mitigation. This study further throws light on the scope of managing the backhaul-aware interference which in turn enhances potential capacity of the system and depending on the suitable backhaul the capacity is improved. Millimetre wave(mm-Wave) has proved to be a remarkable candidate to overcome the issue of ensuring a broad bandwidth having secure link transmission. The ultra-dense heterogeneous networks are discussed along with discussing the role interference management algorithms to minimize energy consumption. The importance of interference management is discussed along with discussing issues related. The research problem is formulated following a comparative analysis.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1318 ◽  
Author(s):  
Ganame ◽  
Yingzhuang ◽  
Ghazzai ◽  
Kamissoko

It can be predicted that the infrastructure of the existing wireless networks will not fill the requirement of the fifth generation (5G) wireless network due to the high data rates and a large number of expected traffic. Thus, a novel deployment method is crucial to satisfy 5G features. Meta-heuristic is expected to be a promising method for the complex deployment optimization problem of the 5G network. This work presents an implementation of a meta-heuristic algorithm based on swarm intelligence, to minimize the number of base stations (BSs) and optimize their placements in millimeter wave (mmWave) frequencies (e.g., 28 GHz and 38 GHz) in the context of the 5G network while satisfying user data rates requirement. Then, an iterative method is applied to remove redundant BSs. We formulate an optimization problem that takes into account multiple 5G network deployment scenarios. Further, a comparative study is conducted with the well-known simulated annealing (SA) using Monte Carlo simulations to assess the performance of the developed model. In our simulation results, we divide the region of interest into two subareas with different user distributions for different network scenarios while considering the intercell interference. The results demonstrate that the proposed approach has better network coverage with low percentage users in outage. In addition, the developed approach has less computational times to reach the desired target network quality of service (QoS).


2020 ◽  
Vol 10 (20) ◽  
pp. 7261
Author(s):  
Wei Zhao ◽  
Wen-Hsing Kuo

With the development of 5G communication, massive multiple input multiple output (MIMO) technology is getting more and more attention. Massive MIMO uses a large amount of simultaneous transmitting and receiving antennas to reduce power consumption and raise the level of transmission quality. Meanwhile, the diversification of user equipment (UE) in the 5G environment also makes heterogeneous networks (HetNets) more prevalent. HetNets allow UE of different network standards to access small cells, while the base stations of small cells access a macro base station (BS) to form a multihop wireless heterogeneous backhaul network. However, how to effectively combine these two technologies by efficiently allocating the antennas of each BS during the route construction process of heterogeneous wireless backhaul networks is still an important issue that is yet to be solved. In this paper, we propose an algorithm called preallocated sequential routing (PSR). Based on the links’ channel conditions and the available antennas and location of BSs, it builds a wireless heterogeneous network backhaul topology and adjusts each link’s transmitting and receiving antennas to maximize total utility. Simulation results showed that the proposed algorithm significantly improved the overall utility and the utility of the outer area of heterogeneous networks.


Author(s):  
Hani’ah Mahmudah ◽  
Okkie Puspitorini ◽  
Ari Wijayanti ◽  
Nur Adi Siswandari ◽  
Rosabella Ika Yuanita

The cellular subscribers’s growth over the years increases the traffic volume at Base Stations (BSs) significantly. Typically, in central business district (CBD) area, the traffic load in cellular network in the daytime is relatively heavy, and light in the daynight. But, Base Station still consumes energy normally. It can cause the energy consumption is wasted. On the other hand, energy consumption being an important issue in the world. Because, higher energy consumption contributes on increasing of emission. Thus, it requires for efficiency energy methods by switching BS dynamically. The methods are Lower-to-Higher (LH) and Higher-to-Lower (HL) scheme on centralized algorithm. In this paper propose cell zooming technique  which can adjusts the cell size dynamic based on traffic condition. The simulation result by using Lower-to-Higher (LH) scheme can save the network energy consumption up to 70.7917% when the number of mobile user is 37 users and 0% when the number of mobile user is more than or equal to 291 users. While, Higher-to-Lower (HL) scheme can save the network energy consumption up to 32.3303% when the number of mobile user is 37 users and 0% when the number of mobile user is more than or equal to 292 users. From both of these schemes, we can analyze that by using Lower-to-Higher (LH) scheme reduces energy consumption greater than using Higher-to-Lower (HL) scheme. Nevertheless, both of them can be implemented for energy-efficient method in CBD area. Eventually, the cell zooming technique by using two schemes on centralized algorithm which leads to green cellular network in Surabaya is investigated.


2015 ◽  
Vol 77 (7) ◽  
Author(s):  
Hoe Tung Yew ◽  
Eko Supriyanto ◽  
M. Haikal Satria ◽  
Yuan Wen Hau

The traditional telecardiology system which is integrated with a single wireless technology is unable to guarantee the patient always get connected to the telecardiology service provider. To overcome this problem, an adaptive user-centric based vertical handover algorithm is proposed to allow the telecardiology system operates in heterogeneous wireless technologies. The proposed algorithm guarantees the quality of service and maintains the user’s satisfaction at the highest level. The algorithm was compared with traditional quality of service based and cost based vertical handover algorithms. The results show that proposed algorithm is performed better than the traditional algorithms


Sign in / Sign up

Export Citation Format

Share Document