The Overview of the Development of Wind Energy

2014 ◽  
Vol 552 ◽  
pp. 107-110
Author(s):  
Xue Song Zhou ◽  
Hui Min Guo ◽  
You Jie Ma

In the field of renewable energy, wind energy has one of the best prospects in all industries. It is a kind of clean, practical, economic and environmentally friendly alternative energy. It also has the advantages of high energy converting rate, large industrial scale、high level technology and so on. Thus in recent years, the developing trend of global wind power industry is rapid, and the growth tide of China has been enhanced significantly. This paper discusses the general development of wind power. Based on the overview of the development of wind energy and combined with the current situation of wind power market, the development trends of wind turbine were discussed. It also proposed the problems which were existed in domestic wind power market.

2014 ◽  
Vol 526 ◽  
pp. 211-216
Author(s):  
Qiong Ying Lv ◽  
Yu Shi Mei ◽  
Xi Jia Tao

As the trend of large-scale wind Power, People pay more attention to wind energy, which as a clean, renewable energy. Traditional unarmed climbing and crane lifting has been unable to meet the requirements of the equipment maintenance. Magnetic climb car can automatically crawl along the wall of the steel tower, the maintenance equipment and personnel can be sent to any height of the tower. The quality of the magnetic wall-climbing car is 550kg, which can carry 1.3 tons load. In this paper completed the magnetic wall-climbing car design and modeling, mechanical analysis in static and dynamic, obtained with the air gap and Magnetic Force curves. The application shows that the magnetic wall-climbing car meets the reliable adsorption, heavy-duty operation, simple operation etc..


2021 ◽  
Author(s):  
◽  
Ramesh Kumar Behara

The growing needs for electric power around the world has resulted in fossil fuel reserves to be consumed at a much faster rate. The use of these fossil fuels such as coal, petroleum and natural gas have led to huge consequences on the environment, prompting the need for sustainable energy that meets the ever increasing demands for electrical power. To achieve this, there has been a huge attempt into the utilisation of renewable energy sources for power generation. In this context, wind energy has been identified as a promising, and environmentally friendly renewable energy option. Wind turbine technologies have undergone tremendous improvements in recent years for the generation of electrical power. Wind turbines based on doubly fed induction generators have attracted particular attention because of their advantages such as variable speed, constant frequency operation, reduced flicker, and independent control capabilities for maximum power point tracking, active and reactive powers. For modern power systems, wind farms are now preferably connected directly to the distribution systems because of cost benefits associated with installing wind power in the lower voltage networks. The integration of wind power into the distribution network creates potential technical challenges that need to be investigated and have mitigation measures outlined. Detailed in this study are both numerical and experimental models to investigate these potential challenges. The focus of this research is the analytical and experimental investigations in the integration of electrical power from wind energy into the distribution grid. Firstly, the study undertaken in this project was to carry out an analytical investigation into the integration of wind energy in the distribution network. Firstly, the numerical simulation was implemented in the MATLAB/Simulink software. Secondly, the experimental work, was conducted at the High Voltage Direct Centre at the University of KwaZulu-Natal. The goal of this project was to simulate and conduct experiments to evaluate the level of penetration of wind energy, predict the impact on the network, and propose how these impacts can be mitigated. From the models analysis, the effects of these challenges intensify with the increased integration of wind energy into the distribution network. The control strategies concept of the doubly fed induction generator connected wind turbine was addressed to ascertain the required control over the level of wind power penetration in the distribution network. Based on the investigation outcomes we establish that the impact on the voltage and power from the wind power integration in the power distribution system has a goal to maintain quality and balance between supply and demand.


Author(s):  
Dilara Gulcin Caglayan ◽  
Heidi Ursula Heinrichs ◽  
Detlef Stolten ◽  
Martin Robinius

The transition towards a renewable energy system is essential in order to reduce greenhouse gas emissions. The increase in the share of variable renewable energy sources (VRES), which mainly comprise wind and solar energy, necessitates storage technologies by which the intermittency of VRES can be compensated for. Although hydrogen has been envisioned to play a significant role as a promising alternative energy carrier in a future European VRES-based energy concept, the optimal design of this system remains uncertain. In this analysis, a hydrogen infrastructure is posited that would meet the electricity and hydrogen demand for a 100% renewable energy-based European energy system in the context of 2050. The overall system design is optimized by minimizing the total annual cost. Onshore and offshore wind energy, open-field photovoltaics (PV), rooftop PV and hydro energy, as well as biomass, are the technologies employed for electricity generation. The electricity generated is then either transmitted through the electrical grid or converted into hydrogen by means of electrolyzers and then distributed through hydrogen pipelines. Battery, hydrogen vessels and salt caverns are considered as potential storage technologies. In the case of a lull, stored hydrogen can be re-electrified to generate electricity to meet demand during that time period. For each location, eligible technologies are introduced, as well as their maximum capacity and hourly demand profiles, in order to build the optimization model. In addition, a generation time series for VRES has been exogenously derived for the model. The generation profiles of wind energy have been investigated in detail by considering future turbine designs with high spatial resolution. In terms of salt cavern storage, the technical potential for hydrogen storage is defined in the system as the maximum allowable capacity per region. Whether or not a technology is installed in a region, the hourly operation of these technologies, as well as the cost of each technology, are obtained within the optimization results. It is revealed that a 100 percent renewable energy system is feasible and would meet both electricity demand and hydrogen demand in Europe.


2019 ◽  
Vol 38 (1) ◽  
pp. 175-200 ◽  
Author(s):  
Shafiqur Rehman ◽  
Narayanan Natarajan ◽  
Mangottiri Vasudevan ◽  
Luai M Alhems

Wind energy is one of the abundant, cheap and fast-growing renewable energy sources whose intensive extraction potential is still in immature stage in India. This study aims at the determination and evaluation of wind energy potential of three cities located at different elevations in the state of Tamil Nadu, India. The historical records of wind speed, direction, temperature and pressure were collected for three South Indian cities, namely Chennai, Erode and Coimbatore over a period of 38 years (1980-2017). The mean wind power density was observed to be highest at Chennai (129 W/m2) and lowest at Erode (76 W/m2) and the corresponding mean energy content was highest for Chennai (1129 kWh/m2/year) and lowest at Erode (666 kWh/m2/year). Considering the events of high energy-carrying winds at Chennai, Erode and Coimbatore, maximum wind power density were estimated to be 185 W/m2, 190 W/m2 and 234 W/m2, respectively. The annual average net energy yield and annual average net capacity factor were selected as the representative parameters for expressing strategic wind energy potential at geographically distinct locations having significant variation in wind speed distribution. Based on the analysis, Chennai is found to be the most suitable site for wind energy production followed by Coimbatore and Erode.


2013 ◽  
Vol 284-287 ◽  
pp. 3580-3585
Author(s):  
Wen Jie Zeng ◽  
Ching Shang Cheng ◽  
Syu Huei Huang ◽  
Chin Fu Lin ◽  
Pao Chi Chen

This article is the study of the professional competence of employees required in the wind energy industry in Taiwan. This will combine a number of research methods, including literature review, Delphi method, IPA analysis to explore the professional capacity of wind power generation projects and connotation of the wind energy industry needs. This paper analyzes the results used as indicators to construct the wind power industry professional, and will be used as the design of the wind power industry practitioners professional competence course. The importance of part of the questionnaire using Likert five-point evaluation index scale [11], divided into very unimportant, unimportant, important, very important, very important to the five levels. The performance of part of the questionnaire, divided into strongly disagree, disagree, agree, agree very much, very much agree with five levels. In this study, the questionnaire survey sent to a written questionnaire of 30 valid questionnaires were collected 27, the effective response rate of 90%. The 39 professional competence items, five items on the C quadrant (the importance of less than 4.0), the remaining 34 (87%) are on the C quadrant (the importance of greater than 4.0). Which is located five professional capacity (13%) in the C quadrant items are green beliefs, it means that domestic subject to government to actively promote the concept of green sustainable.


Author(s):  
P. Venkaiah ◽  
B. K. Sarkar

Abstract The advantages of renewable energy sources are available freely in nature, inexhaustible, produce either no or little pollution and low gestation period. Among all renewable energy sources, wind energy has become one of the leading resources for power production in the world as well as in the India. According to WWEA, the wind turbine installation capacity in the world has been reached over 539.291GW by the end of 2017. The entire wind power installed capacity by the end of 2017 covers more than 5% of global demand of electricity. In India, the present wind power installation capacity on October, 2017 was over 32.7GW and wind energy contribution is 55% of the total renewable energy capacity in the country. Inspite of having sharp growth rate in wind in India, only a fraction of wind energy has been tapped until now out of 302 GW wind potential which is available above 100 m height on shore. Practical horizontal axis wind turbine converts kinetic energy in the wind into useful energy by using airfoil blades. Blade element momentum (BEM) theory becomes very popular due to its simplicity in mathematical calculation as well as accuracy. Hydraulic pitch actuation system has certain advantages due to its versatility, ability to produce constant force and torque irrespective of the disturbances outside of the system, ease and accuracy of control, simplicity, safety and economy. In the present study a semi rotary actuator has been utilized for turbine pitch actuation. In order to extract maximum power from available wind, fractional order PID controller (FOPID) has been developed for pitch control of wind turbine rotor blade. The performances of PID as well as FOPID controller have been compared with available wind data. The performance of FOPID controller was satisfactory compare to PID controller.


2018 ◽  
Vol 70 ◽  
pp. 01017 ◽  
Author(s):  
Izabela Wielewska ◽  
Karol Tucki ◽  
Anna Bączyk ◽  
Magda Trzaska

The aim of the paper was to analyse the wind power market in Poland by reviewing the factors that shape and influence its current state and the possible development prospects. The paper was focused on legislative, environmental, manufacturing, sociocultural and economic factors. Barriers to the development of onshore wind power market and the expected development of wind energy in Poland in the years 2017-2020 were identified and measured based on a survey. The review of individual factors and the study performed present that legislative barriers and the introduction of the ‘distance act’ are factors with the biggest influence on the current stagnation of onshore wind energy sector. A review of the recommendations concerning the distance (from protected areas and housing) required to build wind farms set forth in literature shows that Poland is the only country with such harsh restrictions. With its good environmental conditions and technical capacities, Poland can become a European leader in the production of energy from wind. The only barrier is the legislative environment and political instability on the national level. Without improvements in this sector, there is no chance for new wind projects, as these factors are crucial for development of this type of energy.


2011 ◽  
Vol 187 ◽  
pp. 97-102 ◽  
Author(s):  
Liang Liang ◽  
Jian Lin Li ◽  
Dong Hui

Recently, more and more people realize the importance of environment protection. Electric power generation systems using renewable energy sources have an advantage of no greenhouse effect gas emission. Among all the choices, wind power can offer an economic and environmentally friendly alternative to conventional methods of power supply. As a result, wind energy generation, utilization and its grid penetration in electrical grid is increasing world wide. The wind generated power is always fluctuating due to its time varying nature and causing stability problem. Inserting energy storage system into large scale wind farm to eliminate the fluctuation becomes a solution for developing large scale renewable energy system connected with grid. The topology diagram and control strategy are presented in this paper. According to the simulation result, it could be indicated that embedding energy storage system into wind power system could improve the access friendly and extend system functions. This paper shows that integrating energy storage system into wind power system will build a more reliable and flexible system for power grid.


Author(s):  
Helen Kopnina

With the effects of climate change linked to the use of fossil fuels, as well as the prospect of their eventual depletion, becoming more noticeable, political establishment and society appear ready to switch towards using renewable energy. Solar power and wind power are considered to be the most significant source of global low-carbon energy supply. Wind energy continues to expand as it becomes cheaper and more technologically advanced. Yet, despite these expectations and developments, fossil fuels still comprise nine-tenths of the global commercial energy supply. In this article, the history, technology, and politics involved in the production and barriers to acceptance of wind energy will be explored. The central question is why, despite the problems associated with the use of fossil fuels, carbon dependency has not yet given way to the more ecologically benign forms of energy. Having briefly surveyed some literature on the role of political and corporate stakeholders, as well as theories relating to sociological and psychological factors responsible for the grassroots’ resistance (“not in my backyard” or NIMBYs) to renewable energy, the findings indicate that motivation for opposition to wind power varies. While the grassroots resistance is often fueled by the mistrust of the government, the governments’ reason for resisting renewable energy can be explained by their history of a close relationship with the industrial partners. This article develops an argument that understanding of various motivations for resistance at different stakeholder levels opens up space for better strategies for a successful energy transition.


Sign in / Sign up

Export Citation Format

Share Document