A Steroidal Saponin RCE-4 Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses via Blocking PI3K/Akt-Mediated Nf-κB Activation in RAW264.7 Cells

2014 ◽  
Vol 568-570 ◽  
pp. 1901-1906 ◽  
Author(s):  
Cai Hong Bai ◽  
Hai Bo He ◽  
Fan Cheng ◽  
Kun Zou ◽  
Jun Zhi Wang ◽  
...  

Steroidal saponin: (1β,3β,5β,25S)-spirostan-1,3-diol1-[α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside] (RCE-4) is the most abundant and bioactive members in Reineckia carnea, has been reported to possess antiinflammatory activity, but the underlying mechanisms remain largely unknown. The present aim was to study expression of inflammatory cytokines, on the basis of this investigation, the possible mechanism of RCE-4 was elucidated. In the present study, we found that the concentrations of TNF-α, IL-1β and IL-6 released from LPS-stimulated RAW264.7cells significantly increased compared to control (P<0.01, respectively). After pretreatment with RCE-4, the TNF-α, IL-1β and IL-6 levels significantly decreased compared with the LPS group (P<0.05, P<0.01, respectively). Further studies indicated that RCE-4 significantly suppressed Akt phosphorylation and NF-қB activation, and with the dose of RCE-4 increasing; their improvement became more and more strong. Our results showed that RCE-4 inhibited LPS-stimiulated TNF-α, IL-1β, IL-6 productions through the blockage of PI3K/Akt-mediated NF-κB activation. Our findings might provide a molecular basis for the ability of RCE-4 serving as a promising candidate for treating various inflammatory diseases.

2021 ◽  
Author(s):  
Fatema Al-Rashed ◽  
Zunair Ahmad ◽  
Ashley J Snider ◽  
Reeby Thomas ◽  
Shihab Kochumon ◽  
...  

Abstract Ceramide kinase (CERK) phosphorylates ceramide to produce ceramide-1-phosphate (C1P), which is involved in the development of metabolic inflammation. TNF-α modulates inflammatory responses in monocytes associated with various inflammatory disorders; however, the underlying mechanisms remain not fully understood. Here, we investigated the role of CERK in TNF-α-induced inflammatory responses in monocytes. Our results show that disruption of CERK activity in monocytes either by the chemical inhibitor NVP- 231 or by small interfering RNA (siRNA) results in the defective expression of inflammatory markers including CD11c, CD11b and HLA-DR in response to TNF-α. Our data show that TNF-α upregulates ceramide phosphorylation. Inhibition of CERK in monocytes significantly reduced the secretion of IL-1β and MCP-1. Similar results were observed in CERK deficient cells. Phosphorylation of JNK, p38 and NF-κB resulting from TNF-α stimulation was reduced by inhibition of CERK. Additionally, NF-κB/AP-1 activity was suppressed by the inhibition of CERK. Clinically, obese individuals had higher levels of CERK expression in PBMCs compared to lean individuals, which correlated with TNF-α levels. Taken together, these results suggest that CERK plays a key role in regulating inflammatory responses in human monocytes during TNF-α stimulation. CERK may be a relevant target for developing novel therapies for chronic inflammatory diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatema Al-Rashed ◽  
Zunair Ahmad ◽  
Ashley J. Snider ◽  
Reeby Thomas ◽  
Shihab Kochumon ◽  
...  

AbstractCeramide kinase (CERK) phosphorylates ceramide to produce ceramide-1-phosphate (C1P), which is involved in the development of metabolic inflammation. TNF-α modulates inflammatory responses in monocytes associated with various inflammatory disorders; however, the underlying mechanisms remain not fully understood. Here, we investigated the role of CERK in TNF-α-induced inflammatory responses in monocytes. Our results show that disruption of CERK activity in monocytes, either by chemical inhibitor NVP-231 or by small interfering RNA (siRNA), results in the defective expression of inflammatory markers including CD11c, CD11b and HLA-DR in response to TNF-α. Our data show that TNF-α upregulates ceramide phosphorylation. Inhibition of CERK in monocytes significantly reduced the secretion of IL-1β and MCP-1. Similar results were observed in CERK-downregulated cells. TNF-α-induced phosphorylation of JNK, p38 and NF-κB was reduced by inhibition of CERK. Additionally, NF-κB/AP-1 activity was suppressed by the inhibition of CERK. Clinically, obese individuals had higher levels of CERK expression in PBMCs compared to lean individuals, which correlated with their TNF-α levels. Taken together, these results suggest that CERK plays a key role in regulating inflammatory responses in human monocytes during TNF-α stimulation. CERK may be a relevant target for developing novel therapies for chronic inflammatory diseases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fatema Al-Rashed ◽  
Zunair Ahmad ◽  
Reeby Thomas ◽  
Motasem Melhem ◽  
Ashley J. Snider ◽  
...  

Abstract Obesity is associated with elevated levels of TNF-α and proinflammatory CD11c monocytes/macrophages. TNF-α mediated dysregulation in the plasticity of monocytes/macrophages is concomitant with pathogenesis of several inflammatory diseases, including metabolic syndrome, but the underlying mechanisms are incompletely understood. Since neutral sphingomyelinase-2 (nSMase2: SMPD3) is a key enzyme for ceramide production involved in inflammation, we investigated whether nSMase2 contributed to the inflammatory changes in the monocytes/macrophages induced by TNF-α. In this study, we demonstrate that the disruption of nSMase activity in monocytes/macrophages either by chemical inhibitor GW4869 or small interfering RNA (siRNA) against SMPD3 results in defects in the TNF-α mediated expression of CD11c. Furthermore, blockage of nSMase in monocytes/macrophages inhibited the secretion of inflammatory mediators IL-1β and MCP-1. In contrast, inhibition of acid SMase (aSMase) activity did not attenuate CD11c expression or secretion of IL-1β and MCP-1. TNF-α-induced phosphorylation of JNK, p38 and NF-κB was also attenuated by the inhibition of nSMase2. Moreover, NF-kB/AP-1 activity was blocked by the inhibition of nSMase2. SMPD3 was elevated in PBMCs from obese individuals and positively corelated with TNF-α gene expression. These findings indicate that nSMase2 acts, at least in part, as a master switch in the TNF-α mediated inflammatory responses in monocytes/macrophages.


2020 ◽  
Author(s):  
Fatema Al-Rashed ◽  
Zunair Ahmad ◽  
Reeby Thomas ◽  
Motasem Melhem ◽  
Ashley J. Snider ◽  
...  

ABSTRACTObesity is associated with elevated levels of TNF-α and proinflammatory CD11c monocytes /macrophages. TNF-α mediated dysregulation in the plasticity of monocytes/macrophages is concomitant with pathogenesis of several inflammatory diseases, including metabolic syndrome, but the underlying mechanisms are incompletely understood. Since neutral sphingomyelinase 2 (nSMase2; product of the sphingomyelin phosphodiesterase 3 gene, SMPD3) is a key enzyme for ceramide production involved in inflammation, we investigated whether nSMase2 contributed to the inflammatory changes in the monocytes/macrophages induced by TNF-α. In this study, we demonstrate that the disruption of nSMase activity in monocytes/macrophages either by chemical inhibitor GW4869 or small interfering RNA (siRNA) against SMPD3 results in defects in the TNF-α mediated expression of CD11c. Furthermore, blockage of nSMase in monocytes/macrophages inhibited the secretion of inflammatory mediators IL-1b and MCP-1. In contrast, inhibition of acid SMase (aSMase) activity did not attenuate CD11c expression or secretion of IL-1b and MCP-1. TNF-α-induced phosphorylation of JNK, p38 and NF-κB was also attenuated by the inhibition of nSMase2. Moreover, NF-kB/AP-1 activity was blocked by the inhibition of nSMase2. SMPD3 was elevated in PBMCs from obese individuals and positively corelated with TNF-α gene expression. These findings indicate that nSMase2 acts, at least in part, as a master switch in the TNF-α mediated inflammatory responses in monocytes/macrophages.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2794 ◽  
Author(s):  
Cao ◽  
Chen ◽  
Ren ◽  
Zhang ◽  
Tan ◽  
...  

Punicalagin, a hydrolysable tannin of pomegranate juice, exhibits multiple biological effects, including inhibiting production of pro-inflammatory cytokines in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In this study, we investigated the anti-inflammatory potential of punicalagin in lipopolysaccharide (LPS) induced RAW264.7 macrophages and uncovered the underlying mechanisms. Punicalagin significantly attenuated, in a concentration-dependent manner, LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 release at the highest concentration. We found that punicalagin inhibited NF-κB and MAPK activation in LPS-induced RAW264.7 macrophages. Western blot analysis revealed that punicalagin pre-treatment enhanced LC3II, p62 expression, and decreased Beclin1 expression in LPS-induced macrophages. MDC assays were used to determine the autophagic process and the results worked in concert with Western blot analysis. In addition, our observations indicated that LPS-induced releases of NO, TNF-α, and IL-6 were attenuated by treatment with autophagy inhibitor chloroquine, suggesting that autophagy inhibition participated in anti-inflammatory effect. We also found that punicalagin downregulated FoxO3a expression, resulting in autophagy inhibition. Overall these results suggested that punicalagin played an important role in the attenuation of LPS-induced inflammatory responses in RAW264.7 macrophages and that the mechanisms involved downregulation of the FoxO3a/autophagy signaling pathway.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Hector A Cabrera-Fuentes ◽  
Klaus T Preissner ◽  
William A Boisvert

As an important component of atherosclerosis, monocytes/macrophages respond to external stimuli with rapid changes in their expression of many inflammation-related genes to undergo polarization towards the M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotype. Although sialoadhesin (Sn), also known as SIGLEC-1 or CD169, is a transmembrane protein receptor expressed on monocytes and macrophages whether it has a role in macrophage polarization and ultimately, macrophage-driven atherogenesis, has not been investigated. We have previously shown that, independently of Toll-like receptor signaling, extracellular RNA (eRNA) could exert pro-thrombotic and pro-inflammatory properties in the cardiovascular system by inducing cytokine mobilization. In the current study, recombinant mouse macrophage CSF[[Unable to Display Character: &#8211;]]driven bone marrow-derived macrophage (BMDM) differentiation was found to be skewed towards the M1 phenotype by exposure of cells to eRNA. This resulted in up-regulation of inflammatory markers, whereas anti-inflammatory genes were significantly down-regulated by eRNA. Interestingly, eRNA was released from BMDM under hypoxia and induced TNF-α liberation by activating TNF-α converting enzyme (TACE) to provoke inflammation. Conversely, TNF-α promoted eRNA release, especially under hypoxia, feeding a vicious cycle of cell damage. Administration of RNase1 or TAPI (a TACE-inhibitor) prevented the production of inflammatory mediators. Murine BMDM isolated from mice deficient in sialoadhesin had the opposite reaction to eRNA treatment with a prominent down-regulation of pro-inflammatory cytokines/M1 phenotype markers, while anti-inflammatory cytokines/M2 phenotype markers were significantly raised. In keeping with the proposed role of eRNA as a pro-inflammatory “alarm signal”, these data further shed light on the role of eRNA in macrophage function in the context of chronic inflammatory diseases such as atherosclerosis. The identification of sialoadhesin as putative eRNA recognition site on macrophages may allow further investigation of the underlying mechanisms of eRNA-macrophage interaction and related signal transduction pathways. Siglec-1 thereby may provides a new target to treat eRNA-mediated vascular diseases.


2020 ◽  
Vol 21 (2) ◽  
pp. 413
Author(s):  
Jihae Park ◽  
Jee Taek Kim ◽  
Soo Jin Lee ◽  
Jae Chan Kim

Angiogenin (ANG) is involved in the innate immune system and inflammatory disease. The aim of this study is to evaluate the anti-inflammatory effects of ANG in an endotoxin induced uveitis (EIU) rat model and the pathways involved. EIU rats were treated with balanced salt solution (BSS), a non-functional mutant ANG (mANG), or wild-type ANG (ANG). The integrity of the blood-aqueous barrier was evaluated by the infiltrating cell and protein concentrations in aqueous humor. Histopathology, Western blot, and real-time qRT-PCR of aqueous humor and ocular tissue were performed to analyze inflammatory cytokines and transcription factors. EIU treated with ANG had decreased inflammatory cells and protein concentrations in the anterior chamber. Compared to BSS and mANG, ANG treatment showed reduced expression of IL-1β, IL-8, TNF-α, and Myd88, while the expression of IL-4 and IL-10 was increased. Western blot of ANG treatment showed decreased expression of IL-6, inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, and phosphorylated NF-κB and increased expression of IL-10. In conclusion, ANG seems to reduce effectively immune mediated inflammation in the EIU rat model by reducing the expression of proinflammatory cytokines, while increasing the expression of anti-inflammatory cytokines through pathways related to NF-κB. Therefore, ANG shows potential for effectively suppressing immune-inflammatory responses in vivo.


Blood ◽  
2005 ◽  
Vol 106 (12) ◽  
pp. 3955-3957 ◽  
Author(s):  
Freke M. Kloosterboer ◽  
Simone A. P. van Luxemburg-Heijs ◽  
Ronald A. van Soest ◽  
H. M. Esther van Egmond ◽  
Roel Willemze ◽  
...  

T cells directed against hematopoietic-restricted minor histocompatibility antigens (mHags) may mediate graft-versus-leukemia (GVL) reactivity without graft-versus-host disease (GVHD). Recently, the HLA-A24–restricted mHag ACC-1 and the HLA-B44–restricted mHag ACC-2 encoded by separate polymorphisms within the BCL2A1 gene were characterized. Hematopoietic-restricted expression was suggested for these mHags. We demonstrate BCL2-related protein A1 (BCL2A1) mRNA expression in mesenchymal stromal cells (MSCs) that was up-regulated by the inflammatory cytokines tumor necrosis factor α (TNF-α) and/or interferon γ (IFN-γ). Analysis of cytotoxicity and IFN-γ production illustrated that ACC-2–specific T cells did not recognize untreated MSCs or IFN-γ–treated MSCs but showed specific recognition and killing of MSCs treated with TNF-α plus IFN-γ. We hypothesize that under steady-state circumstances BCL2A1-specific T cells may exhibit relative specificity for hematopoietic tissue, but reactivity against nonhematopoietic cells may occur when inflammatory infiltrates are present. Thus, the role of BCL2A1-specific T cells in differential induction of GVL reactivity and GVHD may depend on the presence of inflammatory responses that may occur during GVHD.


2020 ◽  
Author(s):  
Yalei Zhang ◽  
Xiaobing Deng ◽  
Hao Liang ◽  
Annan Guo ◽  
Kenan Li ◽  
...  

Abstract Background: Dimethyl itaconate (DMI), a membrane-permeable derivative of itaconate, was found to moderate IL-17-IκBζ-induced skin pathology including psoriasis in mouse experiments . TNF-α induced NF-κB pathway, which controls a variety of immune and inflammatory responses, was also proven to play a crucial role as mediator in psoriasis. However, whether DMI interacts with the TNF-α induced NF-κB pathway remains unclear. Results: Here we show that DMI inhibits TNF-α induced NF-κB transcriptional activities in dose-dependent manner in several human cell lines using dual luciferase assay and blocks the NF-κB nuclear entry. Moreover, DMI potently inhibits IKKβ dependent phosphorylation and degradation of IκBα in TNF-α induced activation of NF-κB pathway. We also demonstrate that DMI covalently binds to cysteine residue in IKKβ, a key regulator in NF-κB pathway, to suppress IKKβ activation and inhibit the canonical NF-κB pathway. Conclusion Our study presents a new mechanism for DMI as an anti-inflammatory agent that may have therapeutic potentials in treating NF-κB related human inflammatory diseases. Our results also suggest that itaconate produced by endogenous IRG1 may regulate NF-κB at post translation modification level, and the IRG1-itaconate-NF-κB axis could be targeted as a novel strategy for the treatment of IRG1-NF-κB mediated diseases.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Quésia Euclides Teixeira ◽  
Dennis de Carvalho Ferreira ◽  
Alexandre Marques Paes da Silva ◽  
Lucio Souza Gonçalves ◽  
Fabio Ramoa Pires ◽  
...  

Persistent inflammatory responses in the elderly may act as modifiers on the progression and repair of chronic apical periodontitis lesions (CAPLs). While the involvement of IL-1β, IL-6 and TNF-α in inflammatory responses and, particularly, in CAPL has been documented, their expression in elderly patients needs to be further characterized. Therefore, the purpose of this study was to evaluate and compare the expressions of pro-inflammatory cytokines in CAPL from elderly individuals with young/middle-aged individuals. Thirty CAPL (15 cysts and 15 granulomas) from elderly patients (>60 years) and 30 CAPL (15 cysts and 15 granuloma) from young/middle-aged individuals (20–56 years) were selected. Immunohistochemical reactions were performed against IL-1β, IL-6 and TNF-α. The slides were subdivided into five high-magnification fields and analyzed. The number of positive stains was evaluated for each antibody. There was no significant difference between the cytokines when the cysts and granuloma were compared in the two groups. In the young/middle-aged, only IL-1β showed a difference and was significantly higher in granulomas (p = 0.019). CAPL pro-inflammatory cytokine levels in the elderly were significantly higher than in young/middle-aged individuals (p < 0.05). The pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were significantly higher in CAPL in the elderly compared with the young/middle-aged group. Further elaborate research studies/analyses to elucidate the reasons for and consequences of inflammation in the elderly are recommended.


Sign in / Sign up

Export Citation Format

Share Document