Abstract 553: Siglec-1 (CD169) on Monocytes/Macrophages: A New Receptor For Extracellular Self-RNA in Triggering Inflammatory Responses via the Sheddase TACE/ADAM17

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Hector A Cabrera-Fuentes ◽  
Klaus T Preissner ◽  
William A Boisvert

As an important component of atherosclerosis, monocytes/macrophages respond to external stimuli with rapid changes in their expression of many inflammation-related genes to undergo polarization towards the M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotype. Although sialoadhesin (Sn), also known as SIGLEC-1 or CD169, is a transmembrane protein receptor expressed on monocytes and macrophages whether it has a role in macrophage polarization and ultimately, macrophage-driven atherogenesis, has not been investigated. We have previously shown that, independently of Toll-like receptor signaling, extracellular RNA (eRNA) could exert pro-thrombotic and pro-inflammatory properties in the cardiovascular system by inducing cytokine mobilization. In the current study, recombinant mouse macrophage CSF[[Unable to Display Character: –]]driven bone marrow-derived macrophage (BMDM) differentiation was found to be skewed towards the M1 phenotype by exposure of cells to eRNA. This resulted in up-regulation of inflammatory markers, whereas anti-inflammatory genes were significantly down-regulated by eRNA. Interestingly, eRNA was released from BMDM under hypoxia and induced TNF-α liberation by activating TNF-α converting enzyme (TACE) to provoke inflammation. Conversely, TNF-α promoted eRNA release, especially under hypoxia, feeding a vicious cycle of cell damage. Administration of RNase1 or TAPI (a TACE-inhibitor) prevented the production of inflammatory mediators. Murine BMDM isolated from mice deficient in sialoadhesin had the opposite reaction to eRNA treatment with a prominent down-regulation of pro-inflammatory cytokines/M1 phenotype markers, while anti-inflammatory cytokines/M2 phenotype markers were significantly raised. In keeping with the proposed role of eRNA as a pro-inflammatory “alarm signal”, these data further shed light on the role of eRNA in macrophage function in the context of chronic inflammatory diseases such as atherosclerosis. The identification of sialoadhesin as putative eRNA recognition site on macrophages may allow further investigation of the underlying mechanisms of eRNA-macrophage interaction and related signal transduction pathways. Siglec-1 thereby may provides a new target to treat eRNA-mediated vascular diseases.

2015 ◽  
Vol 11 (4) ◽  
pp. 1169-1173 ◽  
Author(s):  
Mahdi Hasanzadeh Daloee ◽  
Amir Avan ◽  
Seyed Reza Mirhafez ◽  
Elahe Kavousi ◽  
Mehdi Hasanian-Mehr ◽  
...  

Inflammation plays a key role in the initiation, progression, and clinical manifestation of atherosclerosis. Cigarette smoking is a risk factor for atherosclerosis and cardiovascular disease. The aim of the current study was to investigate the serum concentrations of 12 cytokines and growth factors (EGF, INF-γ, IL-1α/-1β/-2/-4/-6/-8/-10, MCP-1, TNF-α, and VEGF) in an Iranian population, including 192 smokers, comparing these values with concentrations in nonsmokers. One hundred and ninety-two cases were enrolled from the Mashhad University of Medical Sciences. Of these cases, 82 were cigarette smokers and 110 were nonsmokers. Sex and age were matched for the two groups. The serum concentration of 12 cytokines and growth factors were determined using EV-3513-cytokine-biochip arrays, by competitive chemiluminescence immunoassays. The level of serum MCP-1 was significantly ( p < .001) lower in the female group of cigarette smokers (mean = 88.1 dL/ng), compared with nonsmokers (mean = 155.6 dL/ng). There were no significant differences for the other cytokines and growth factors between the groups. Our finding demonstrate the association of MCP-1 with cigarette smoking, supporting further studies in larger population on evaluating the role of cigarette smoking on pro-/anti-inflammatory cytokines.


2020 ◽  
Vol 40 (9) ◽  
pp. 2070-2083
Author(s):  
Lin-Lin Wei ◽  
Ning Ma ◽  
Kun-Yi Wu ◽  
Jia-Xing Wang ◽  
Teng-Yue Diao ◽  
...  

Objective: Emerging evidence suggests that C3aR (C3a anaphylatoxin receptor) signaling has protective roles in various inflammatory-related diseases. However, its role in atherosclerosis has been unknown. The purpose of the study was to investigate the possible protective role of C3aR in aortic atherosclerosis and explore molecular and cellular mechanisms involved in the protection. Approach and Results: C3ar −/− /Apoe −/− mice were generated by cross-breeding of atherosclerosis-prone Apoe −/− mice and C3ar −/− mice. C3ar −/− /Apoe −/− mice and Apoe −/− mice (as a control) underwent high-fat diet for 16 weeks were assessed for (1) atherosclerotic plaque burden, (2) aortic tissue inflammation, (3) recruitment of CD11b + leukocytes into atherosclerotic lesions, and (4) systemic inflammatory responses. Compared with Apoe −/− mice, C3ar −/− /Apoe −/− mice developed more severe atherosclerosis. In addition, C3ar −/− /Apoe −/− mice have increased local production of proinflammatory mediators (eg, CCL2 [chemokine (C-C motif) ligand 2], TNF [tumor necrosis factor]-α) and infiltration of monocyte/macrophage in aortic tissue, and their lesional macrophages displayed an M1-like phenotype. Local pathological changes were associated with enhanced systemic inflammatory responses (ie, elevated plasma levels of CCL2 and TNF-α, increased circulating inflammatory cells). In vitro analyses using peritoneal macrophages showed that C3a stimulation resulted in upregulation of M2-associated signaling and molecules, but suppression of M1-associated signaling and molecules, supporting the roles of C3a/C3aR axis in mediating anti-inflammatory response and promoting M2 macrophage polarization. Conclusions: Our findings demonstrate a protective role for C3aR in the development of atherosclerosis and suggest that C3aR confers the protection through C3a/C3aR axis–mediated negative regulation of proinflammatory responses and modulation of macrophage toward the anti-inflammatory phenotype.


2020 ◽  
Vol 21 (2) ◽  
pp. 413
Author(s):  
Jihae Park ◽  
Jee Taek Kim ◽  
Soo Jin Lee ◽  
Jae Chan Kim

Angiogenin (ANG) is involved in the innate immune system and inflammatory disease. The aim of this study is to evaluate the anti-inflammatory effects of ANG in an endotoxin induced uveitis (EIU) rat model and the pathways involved. EIU rats were treated with balanced salt solution (BSS), a non-functional mutant ANG (mANG), or wild-type ANG (ANG). The integrity of the blood-aqueous barrier was evaluated by the infiltrating cell and protein concentrations in aqueous humor. Histopathology, Western blot, and real-time qRT-PCR of aqueous humor and ocular tissue were performed to analyze inflammatory cytokines and transcription factors. EIU treated with ANG had decreased inflammatory cells and protein concentrations in the anterior chamber. Compared to BSS and mANG, ANG treatment showed reduced expression of IL-1β, IL-8, TNF-α, and Myd88, while the expression of IL-4 and IL-10 was increased. Western blot of ANG treatment showed decreased expression of IL-6, inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, and phosphorylated NF-κB and increased expression of IL-10. In conclusion, ANG seems to reduce effectively immune mediated inflammation in the EIU rat model by reducing the expression of proinflammatory cytokines, while increasing the expression of anti-inflammatory cytokines through pathways related to NF-κB. Therefore, ANG shows potential for effectively suppressing immune-inflammatory responses in vivo.


2019 ◽  
Vol 317 (6) ◽  
pp. F1409-F1413 ◽  
Author(s):  
Jason E. Engel ◽  
Alejandro R. Chade

Macrophages are heterogenous cells of the innate immune system that can fluidly modulate their phenotype to respond to their local microenvironment. They are found throughout the renal compartments, where they contribute to homeostasis and function. However, renal injury activates molecular pathways that initially stimulate differentiation of macrophages into a proinflammatory M1 phenotype. Later in the course of healing, abundant apoptotic debris and anti-inflammatory cytokines induce the production of anti-inflammatory M2 macrophages, which contribute to tissue regeneration and repair. Thus, the dynamic balance of M1 and M2 populations may outline the burden of inflammation and process of tissue repair that define renal outcomes, which has been the impetus for therapeutic efforts targeting macrophages. This review will discuss the role of these phenotypes in the progression of chronic renal injury, potential pathogenic mechanisms, and the promise of macrophage-based therapeutic applications for chronic kidney disease.


2019 ◽  
Vol 61 (2) ◽  
pp. 143-158 ◽  
Author(s):  
Alexander J. Nelson ◽  
Daniel J. Stephenson ◽  
Christopher L. Cardona ◽  
Xiaoyong Lei ◽  
Abdulaziz Almutairi ◽  
...  

Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)β (iPLA2β). Here, we assessed the link between iPLA2β-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2β−/−) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2β.Tg mice with selective iPLA2β overexpression in β-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2β−/−, and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2β.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2β-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that β-cell iPLA2β-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders.


2021 ◽  
Vol 19 ◽  
pp. 205873922110005
Author(s):  
Guirong Chen ◽  
Yunong Liu ◽  
Yubin Xu ◽  
Mingbo Zhang ◽  
Song Guo ◽  
...  

Isoimperatorin (QHS) is a phytoconstituent found in the methanolic extracts obtained from the roots of Angelica dahurica, which contains anti-inflammatory, anti-bacterial, analgesic, anti-tumor, and vasodilatory activities. QHS possesses potent antagonistic activity against lipopolysaccharide (LPS)-induced inflammation; however, the mechanism of action remains unclear. In this study, we investigated the anti-inflammatory effect of QHS and explored the underlying mechanisms. The QHS was purchased from Jiangsu Yongjian Pharmaceutical Co., Ltd. (Jiangsu, China). We performed MTT assay, real-time PCR, ELISA, and western blotting experiments to assess the anti-inflammatory activity and the possible mechanism of QHS in vitro. Molecular docking was performed to study the binding of QHS and myeloid differentiation protein-2 (MD-2) and elucidate the possible anti-inflammatory mechanism. QHS had no significant effect on cell viability. Moreover, pre-treatment with QHS significantly decreased the release of inflammatory cytokines and mediators including NO, TNF-α, IL-6, and IL-1β. In addition, real-time PCR showed that QHS decreased the mRNA expressions of iNOS, COX-2 TNF-α, IL-6, and IL-1β. Western blotting indicated that QHS could inhibit the expression of the proteins associated with the LPS-TLR4/MD-2-NF-κB signaling pathway. Lastly, molecular docking revealed a possible binding mechanism between QHS and MD-2. QHS exhibited anti-inflammatory activity when combined with MD-2, regulating the LPS-TLR4/MD-2-NF-κB signaling pathway, and inhibiting the release and expression of inflammatory cytokines and mediators. Furthermore, QHS can be used as a potential TLR4 antagonist, which blocks MD-2 binding, for treating inflammatory responses induced by LPS.


Proceedings ◽  
2020 ◽  
Vol 66 (1) ◽  
pp. 21
Author(s):  
Bruna A. Caetano ◽  
Daniela B. Mourão ◽  
Patrícia A. E. Abreu ◽  
Denize Monaris ◽  
Halyka L. Vasconcellos ◽  
...  

Enteropathogenic Escherichia coli (EPEC) are important agents of acute diarrhea in children living in developing countries. A severe dysfunction of the intestinal epithelial barrier occurs during EPEC infection, leading to diarrhea and inflammation as consequences. EPEC main virulence factors include the adhesins intimin and bundle-forming pilus (BFP), as well as several effector proteins translocated to the enterocyte by the type-three secretion system. The initial interaction of EPEC with the host cell and the role of effector proteins in this process are well known. However, the role of the EPEC virulence factors in macrophage activation is not fully understood. Hence, we analyzed the ability of intimin and bundle-forming pilus (BfpA) to activate the innate response mediated by macrophages, where the production of the proinflammatory cytokines TNF-α, IL-1, IL-6 and IL-12, as well as the anti-inflammatory cytokine IL-10 and chemokine MCP-1, were evaluated. Our results showed that recombinant intimin and BfpA activate macrophages in a dose-dependent manner, and the stimulated cells produced TNF-α, IL-12, IL-6, IL-10 and MCP-1, but not IL-1β. No synergistic effect was observed in the production of pro-inflammatory cytokines by combining BfpA and intimin, although production of IL-10, an anti-inflammatory mediator, was potentiated at a higher dose. The effect observed was largely attributed to these proteins, as the treatment of proteins with polymyxin B did not alter the production of TNF-α. Thus, herein we showed that intimin and BfpA can activate the innate immune response, inducing the production of pro- and anti-inflammatory cytokines, as well as chemokines, playing additional role as inflammatory molecules in the early steps of EPEC infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hellen Braga Martins Oliveira ◽  
Nathan das Neves Selis ◽  
Thamara Louisy Santos Brito ◽  
Beatriz Almeida Sampaio ◽  
Rafaela de Souza Bittencourt ◽  
...  

AbstractStaphylococcus aureus is a Gram-positive bacterium that is considered an important human pathogen. Due to its virulence and ability to acquire mechanisms of resistance to antibiotics, the clinical severity of S. aureus infection is driven by inflammatory responses to the bacteria. Thus, the present study aimed to investigate the modulating role of citral in inflammation caused by S. aureus infection. For this, we used an isolate obtained from a nasal swab sample of a healthy child attending a day-care centre in Vitória da Conquista, Bahia, Brazil. The role of citral in modulating immunological factors against S. aureus infection was evaluated by isolating and cultivating human peripheral blood mononuclear cells. The monocytes were treated with 4%, 2%, and 1% citral before and after inoculation with S. aureus. The cells were analysed by immunophenotyping of monocyte cell surface molecules (CD54, CD282, CD80, HLA-DR, and CD86) and cytokine dosage (IL-1β, IL-6, IL-10, IL-12p70, IL-23, IFN-γ, TGF-β, and TNF-α), and evaluated for the expression of 84 genes related to innate and adaptive immune system responses. GraphPad Prism software and variables with P values < 0.05, were used for statistical analysis. Our data demonstrated citral’s action on the expression of surface markers involved in recognition, presentation, and migration, such as CD14, CD54, and CD80, in global negative regulation of inflammation with inhibitory effects on NF-κB, JNK/p38, and IFN pathways. Consequently, IL-1β, IL-6, IL-12p70, IL-23, IFN-γ, and TNF-α cytokine expression was reduced in groups treated with citral and groups treated with citral at 4%, 2%, and 1% and infected, and levels of anti-inflammatory cytokines such as IL-10 were increased. Furthermore, citral could be used as a supporting anti-inflammatory agent against infections caused by S. aureus. There are no data correlating citral, S. aureus, and the markers analysed here; thus, our study addresses this gap in the literature.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Shaojuan Liu ◽  
Jie Yang ◽  
Zhenfang Wu

Macrophages are multifunctional immune cells whose functions depend on polarizable phenotypes and the microenvironment. Macrophages have two phenotypes, including the M1 proinflammatory phenotype and the M2 anti-inflammatory phenotype, which play important roles in many inflammatory responses and diseases. α-Ketoglutarate is a key metabolite of the TCA cycle and can regulate the phenotype of macrophage polarization to exert anti-inflammatory effects in many inflammation-related diseases. In this review, we primarily elucidate the metabolism, regulatory mechanism, and perspectives of α-ketoglutarate on macrophages. The regulation of macrophage polarization by α-ketoglutarate may provide a promising target for the prevention and therapy of inflammatory diseases and is beneficial to animal health.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guangxin Luan ◽  
Fan Pan ◽  
Lina Bu ◽  
Kaixuan Wu ◽  
Aizhong Wang ◽  
...  

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by diffuse inflammation of the lung parenchyma and refractory hypoxemia. Butorphanol is commonly used clinically for perioperative pain relief, but whether butorphanol can regulate LPS-induced alveolar macrophage polarization is unclear. In this study, we observed that butorphanol markedly attenuated sepsis-induced lung tissue injury and mortality in mice. Moreover, butorphanol also decreased the expression of M1 phenotype markers (TNF-α, IL-6, IL-1β and iNOS) and enhanced the expression of M2 marker (CD206) in alveolar macrophages in the bronchoalveolar lavage fluid (BALF) of LPS-stimulated mice. Butorphanol administration reduced LPS-induced numbers of proinflammatory (M1) macrophages and increased numbers of anti-inflammatory (M2) macrophages in the lungs of mice. Furthermore, we found that butorphanol-mediated suppression of the LPS-induced increases in M1 phenotype marker expression (TNF-α, IL-6, IL-1β and iNOS) in bone marrow-derived macrophages (BMDMs), and this effect was reversed by κ-opioid receptor (KOR) antagonists. Moreover, butorphanol inhibited the interaction of TLR4 with MyD88 and further suppressed NF-κB and MAPKs activation. In addition, butorphanol prevented the Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF)-mediated IFN signaling pathway. These effects were ameliorated by KOR antagonists. Thus, butorphanol may promote macrophage polarization from a proinflammatory to an anti-inflammatory phenotype secondary to the inhibition of NF-κB, MAPKs, and the TRIF-mediated IFN signaling pathway through κ receptors.


Sign in / Sign up

Export Citation Format

Share Document