Interactive Effects of Salt and Drought Stresses on Seed Germination of Ammopiptanthus mongolicus in Northwest China

2014 ◽  
Vol 614 ◽  
pp. 653-657 ◽  
Author(s):  
Xiao Xue Shen ◽  
Min Wei Chai ◽  
Rui Li Li ◽  
Guo Yu Qiu

A study quantifying the role of the interactive effects of salt and drought stresses, generally co-occurred in deserts, on seed germination in Ammopiptanthus mongolicus was conducted in a constant temperature incubator. The experiment consisted of seven levels of salinity stress (0, 0.3, 0.6, 0.9, 1.2, 1.5 and 1.8% NaCl) as well as six drought stress levels (0, -0.2, -0.4, -0.8, -1.6 and-2.0 MPa PEG). Accordant to our expectations, the interactive effects of salinity and drought stresses were additive on seed germination percentages, germination rate, and germination energy; significant decreases were seen in all of them in response to increases in salt and/or drought stresses. Furthermore, regression coefficients of salinity (β1) were higher than drought (β2), indicating that salinity was the first factor, and drought was secondary for salt and drought mixed stresses.

2017 ◽  
Vol 68 (2) ◽  
pp. 188 ◽  
Author(s):  
Jixiang Lin ◽  
Yujie Shi ◽  
Shuang Tao ◽  
Xingyang Yu ◽  
Dafu Yu ◽  
...  

Leymus chinensis has important forage value and is considered a useful grass species for grassland restoration in Northeast China. However, little information exists concerning the germination responses of this species to interactions of cold stratification, light, temperature and low water potential caused by salinity and drought. Experiments were conducted in growth chambers, and the results showed that in all conditions of light, temperature and water stresses, the germination percentages of cold-stratified seeds were higher than of non-stratified seeds. Light had an inhibitory effect on germination percentage under both non-saline and salt stress conditions; darkness is beneficial for germination of this species. In addition, seeds germinated much better under alternating temperature regimes than under constant temperatures. Both salt and drought stresses decreased the germination percentage of Leymus chinensis, but the reductions under drought stress were much greater. Moreover, after being transferred to distilled water, most non-germinated seeds under drought stress germinated well, and the total percentage reached that of the non-saline condition level. Therefore, cold stratification is an effective measure to increase seed germination and salt or drought tolerance, especially in darkness. We conclude that Leymus chinensis has definite salt and drought tolerance during the germination stage and it is a promising species for the restoration of deteriorated grassland in Northeast China.


2011 ◽  
Vol 183-185 ◽  
pp. 1071-1074
Author(s):  
Yong Dong Sun ◽  
Xiao Hua Du ◽  
Wen Jie Zhang ◽  
Li Sun ◽  
Ran Li

Effects of drought stress on the seed germination and physiological characteristics of amaranth were investigated. The results were as follows: the germination rate and germination potential of amaranth decreased with the increasing of PEG-6000 concentrations. Meanwhile, the root length, shoot length and peroxidase (POD) activity were significantly increased at lower PEG-6000 concentrations, but then decreased with the increasing of PEG-6000. Malondialdehyde (MDA) content, proline content and superoxide dismutase (SOD) activity were all significantly increased under drought stress, and reached the top at 20% PEG-6000. These findings indicated that amaranth tolerates drought stress through increasing the activities of SOD and POD and accumulating proline content.


2004 ◽  
Vol 82 (11) ◽  
pp. 1662-1670 ◽  
Author(s):  
Yuanrun Zheng ◽  
Yong Gao ◽  
Ping An ◽  
Hideyuki Shimizu ◽  
Glyn M Rimmington

Agriophyllum squarrosum (L.) Moq. (Chenopodiaceae), a pioneer species of natural succession in semi-arid regions of China, is widely used for vegetation rehabilitation by air seeding. Experiments were conducted to determine the effects of light intensity and photoperiod, as well as constant and alternating temperatures, on germination to improve the technology of air seeding. Seed of A. squarrosum rarely (<18.5%) germinated at 5/15, 10/20, 15/25, and 20/30 °C (night/day); 39.5% of seeds germinated at 25/35 °C in a 14-h (215 µmol·m–2·s–1) photoperiod. Under dark conditions there was a high final percent seed germination (>90%), except for 71.8% final percent seed germination at 5/15 °C. Constant temperature conditions were associated with lower seed germination (<50%). Less than 13% of seeds germinated at different light intensities (25–400 µmol·m–2·s–1) at 10/20 °C. There was no significant difference in final percent germination when seeds were exposed to 400, 100, or 25 µmol m–2 s–1 for 2 h daily. Final percent germination and germination rate deceased rapidly when the photoperiod was increased under 400 µmol·m–2·s–1. Only 49.2% of seeds germinated after 3 d. Because of the deleterious effect of light on germination, air seeding in late May is recommended.Key words: Agriophyllum squarrosum, air seeding, alternating temperature, constant temperature, light, semi-arid regions.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 456
Author(s):  
Panpan Huang ◽  
Changxia Li ◽  
Huwei Liu ◽  
Zongxi Zhao ◽  
Weibiao Liao

Hydrogen gas (H2), an important gaseous regulator, is involved in various plant growth and development processes. However, there have been few studies on the role of H2 in seed germination. In this study, the role and underlying mechanisms of H2 in enhancing seed germination were investigated in cucumber (Cucumis sativus L.). The results revealed that the germination rate, germ length, germination index, and vitality index of cucumber exhibited a dose-dependent relationship with the increase in concentrations of hydrogen-rich water (HRW, a H2 donor; 0, 1, 10, 25, 50, 75, and 100%), attaining the maximum values with 75% HRW treatment. Treatment with 75% HRW resulted in higher contents of soluble sugar, soluble protein, and starch than the control. Additionally, the activity of α-amylase, β-amylase, and total amylase was significantly improved by 75% HRW treatment compared to the control, reaching the maximum values at 36 h. Moreover, the expression levels of starch-related genes AMY and BMY and sugar-related genes SS4 and SS3 were significantly upregulated by 75% HRW treatment during germination, particularly at 36 h. These results suggest that H2 might promote cucumber seed germination by increasing sugar and starch metabolisms.


2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Yongji Wang

With polyethylene glycol (PEG-6000), of 0% (CK), 5%, 10%, 15%, 25% used to simulate drought stress, and CaCl2 concentration 0 (CK), of 15, 20, 25 and 30mmol/L as ion gradient of exogenous calcium, the effects of drought, exogenous calcium and the interaction between the two on the Datura seed germination, so as to explore the optimal application amount of exogenous calcium to ease the suppression of drought stress on Datura seed germination. The results showed that the germination rate, germination potential and germination index of the Datura seeds were significantly lower than those of the control group. Under the normal moisture condition, exogenous calcium of moderate and low concentration had no significant effect on the Datura seed germination, while that of high concentration showed an inhibitory effect on the seed germination. Under drought stress, with the increasing concentration of exogenous calcium, the three indicators of Datura seeds showed a trend of increasing first and then decreasing. When the exogenous calcium had the concentration of 20 mmol/L, all the indicators of seed germination reached the maximum value, while showed a downward trend when exogenous calcium concentration was 25-30 mmol/L, and even increasingly sharp with drought intensifying. Therefore, in the production and utilization of Datura, 20 mmol/L of exogenous calcium can be used to soak seeds before sowing to improve the emergence rate under low and moderate drought conditions.


2019 ◽  
Author(s):  
Chathurika Wijewardana ◽  
K. Raja Reddy ◽  
L. Jason Krutz ◽  
Wei Gao ◽  
Nacer Bellaloui

AbstractEffects of environmental stressors on the parent may be transmitted to the F1 generation of plants that support global food, oil, and energy production for humans and animals. This study was conducted to determine if the effects of drought stress on parental soybean plants are transmitted to the F1 generation. The germination and seedling vigor of F1 soybean whose maternal parents, Asgrow AG5332 and Progeny P5333RY, were exposed to soil moisture stress, that is, 100, 80, 60, 40, and 20% replacement of evapotranspiration (ET) during reproductive growth, were evaluated under controlled conditions. Pooled over cultivars, effects of soil moisture stress on the parents caused a reduction in the seed germination rate, maximum seed germination, and overall seedling performance in the F1 generation. The effect of soil moisture stress on the parent induced an irreversible change in the seed quality in the F1 generation and the effects on seed quality in the F1 generation were exasperated when exposed to increasing levels of drought stress. Results indicate that seed weight and storage reserve are key factors influencing germination traits and seedling growth. Our data confirm that the effects of drought stress on soybean are transferable, causing reduced germination, seedling vigor, and seed quality in the F1 generation.


2007 ◽  
Vol 34 (3) ◽  
pp. 228 ◽  
Author(s):  
Christoph Studer ◽  
Yuncai Hu ◽  
Urs Schmidhalter

Many physiological mechanisms associated with nutrient supply have been implicated as improving plant growth under drought conditions. However, benefits to plant growth under drought might derive from an increased recovery of soil water through osmotic adjustment in the shoots and especially in the roots. Thus, experiments were carried out to investigate the effects of the nutrients N, P and K applied singly or in combination, on the osmotic adjustment and turgor maintenance in the roots and leaves of maize seedlings. The seedlings were harvested between 18 and 37 days after sowing according to the soil matric threshold potentials. Soil matric potentials and shoot and root biomass were determined at harvest. Turgor pressure and osmotic adjustment of the leaves and roots were estimated by measurements of their water and osmotic potentials. Results showed that plants with either of the combined fertilisation treatments NPK or NP grew faster at a given level of drought stress than those with no fertilisation, N, P or K applied individually or the combined nutrient treatments PK and NK. Among the fertiliser applications with either a single or two combined nutrients, plants treated with any of N, P or NP grew faster than those with either K or NK. The association between the interactive effects of nutrients and drought stress on the osmotic adjustment and turgor maintenance in roots may partially explain the role of nutrients in drought tolerance of maize seedlings. In particular, the roots exhibited a higher osmotic adjustment than the leaves for all nutrient treatments, suggesting that shoot growth shows a higher sensitivity to water deficit compared to root growth. We conclude that the maintained turgor of roots under drought stress obtained with an optimal nutrient supply results in better root growth and apparently promotes overall plant growth, suggesting that osmotic adjustment is an adaptation not only for surviving stress, but also for growth under such conditions.


2019 ◽  
Vol 11 (2) ◽  
pp. 310 ◽  
Author(s):  
Mariana S. Queiroz ◽  
Carlos E. S. Oliveira ◽  
Fábio Steiner ◽  
Alan M. Zuffo ◽  
Tiago Zoz ◽  
...  

Seeds of maize (Zea mays L.) and sorghum [Sorghum bicolor (L.) Moench.] were submitted to different osmotic potential levels induced by polyethylene glycol (PEG) with the objective of evaluating the effects of drought stress on seed germination and early seedling growth. Seeds were arranged in paper rolls and soaked in PEG solutions prepared with osmotic potentials 0.0 (control), -0.2, -0.4, and -0.8 MPa and kept into a seed germinator, at 25 &deg;C for 18 days. A completely randomized design in a 2 &times; 4 factorial scheme with four replications of 50 seeds each was used. The results showed that by increasing of the osmotic potential level, germinated seed number, germination rate index, root and shoot length, shoot and root dry matter, and seedling vigor index (SVI) decreased, while mean germination time (MGT) and root: shoot ratio (RSR) increased in both crops. Additionally, the maize was more susceptible than sorghum to drought stress, with germination response declining more rapidly with decreasing osmotic potential. Sorghum crop tolerates water stress of up to -0.2 MPa, without reducing germination of the seeds; however, the growth of shoots and roots are inhibited. Drought stress limits the process of seed germination and early growth of maize seedlings.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 448B-448
Author(s):  
Donglin Zhang ◽  
Diemeng Hu ◽  
John Smagula

Iris versicolor (blue-flag iris) is a native aquatic plant that grows from Maine to Virginia. It is an important species of wetland regeneration and restoration. Unfortunately, seed germination seldom occurs in the wild. To address this problem, seeds of Iris versicolor were soaked with gibberellin acid (0, 500, 1000, and 1500 ppm) for 24 h after 120 days of cold treatment at 4 °C and then were randomly assigned to three germination temperatures (constant 21 °C; 24 °C/18 °C; 27C/15 °C) and placed in darkness. Germination rates for the three temperature treatments were 54.4% (21 °C), 96.5% (24 °C/18 °C), and 96.0% (27C/15 °C). Oscillating temperature treatments had significantly greater germination rate than constant temperature. Gibberellin acid had significant influence on germination rate; only the constant 21 °C was not favorable for germination. The germination rate was higher at 1000 than at 500 ppm or 1500 ppm or more. Germination occurred within 10 days under germination temperature treatments. All seedlings in petri dishes were successfully transplanted into growing flats.


Sign in / Sign up

Export Citation Format

Share Document