Researching Oil Purification Equipment System Fuzzy Reconfiguration

2014 ◽  
Vol 635-637 ◽  
pp. 1985-1989
Author(s):  
Yong Ming Tang ◽  
Guang Zhong Hu ◽  
Xu Xu Wang

Complexity and reuse-ability are found in process of design and product oil purification equipment, reconfigurable design and study the product and resources reuse are of practical significance. By fuzzy theory and reconfigurable design method, oil purification equipment reconfigurable design system function modules are built; Modular construction techniques for each equipment system configuration module product demand are utilized. By the method of object-oriented programming, reconfigurable design platform is built, the efficiency of product design is proved, and the resource reuse is realized.

Author(s):  
Kikuo Fujita ◽  
Shinsuke Akagi

Abstract A Framework of computational design method and model is proposed for layout and geometry design of complicated mechanical systems, which is named “configuration network and its viewing control”. In the method, a design object is represented with a set of declarative relationships among various elements of a system, that is, configurations, which is gradually extended from schematic structure to exact layout and geometry through design process. Since a whole of such configurations forms a too complicated network to compute all together, how to view subparts is controlled based on levels of granularity and width of scope range. Such a configuration network is made to grow and refined through embodying geometry and layout corresponding to a focused subpart with a numerical optimization procedure. The framework has also an ability to flexibly integrate with engineering analysis. Moreover, a design system is implemented with an object-oriented programming technique, and it is applied to a design problem of air conditioner units in order to show the validity and effectiveness of the framework.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1540
Author(s):  
Qianqian Ji ◽  
Zhe Gao ◽  
Xingyao Li ◽  
Jian’en Gao ◽  
Gen’guang Zhang ◽  
...  

The Loess Hilly–Gully region (LHGR) is the most serious soil erosion area in the world. For the small watershed with high management in this area, the scientific problem that has been paid attention to in recent years is the impact of the land consolidation project on the erosion environment in the gully region. In this study, the 3D simulation method of vegetation, eroded sediment and pollutant transport was innovated based on the principles of erosion sediment dynamics and similarity theory, and the impacts of GLCP were analyzed on the erosion environment at different scales. The verification results show that the design method and the scale conversion relationship (geometric scale: λl = 100) were reasonable and could simulate the transport process on the complex underlying surface of a small watershed. Compared with untreated watersheds, a significant change was the current flood peak lagging behind the sediment peak. There were two important critical values of GLCP impact on the erosion environment. The erosion transport in HMSW had no change when the proportion was less than 0.85%, and increased obviously when it was greater than 3.3%. The above results have important theoretical and practical significance for watershed simulation and land-use management in HMSW.


Author(s):  
Huiqiu Guo

With poor integrity and unclear goals, the curriculum planning for physical education (PE) in colleges cannot effectively promote the innovation ability of students. To solve the problem, this paper attempts to clearly evaluate the effect of curriculum planning for college PE on the innovation ability of PE majors. Based on the defects of the current curriculum planning, the authors put forward several strategies and suggestions to enhance the promoting effect of college PE curriculum planning on innovation ability. Following the fuzzy theory, an index system and a fuzzy evaluation model were put forward to quantify the effect of college PE curriculum planning on innovation ability. The research results have great theoretical and practical significance.


ISRN Optics ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Suyong Wu ◽  
Xingwu Long ◽  
Kaiyong Yang

We present a novel fast robust design method of multilayer optical coatings. The sensitivity of optical films to production errors is controlled in the whole optimization design procedure. We derive an analytical calculation model for fast robust design of multilayer optical coatings. We demonstrate its effectiveness by successful application of the robust design method to a neutral beam splitter. It is showed that the novel robust design method owns an inherent fast computation characteristic and the designed film is insensitive to the monitoring thickness errors in deposition process. This method is especially of practical significance to improve the mass production yields and repetitive production of high-quality optical coatings.


Author(s):  
Qi Cheng ◽  
Shuchun Wang ◽  
Xifeng Fang

The existing process equipment design resource utilization rate in automobile industry is low, so it is urgent to change the design method to improve the design efficiency. This paper proposed a fast design method of process equipment driven by classification retrieval of 3D model-based definition (MBD). Firstly, an information integration 3D model is established to fully express the product information definition and to effectively express the design characteristics of the existing 3D model. Through the classification machine-learning algorithm of 3D MBD model based on Extreme Learning Machine (ELM), the 3D MBD model with similar characteristics to the auto part model to be designed was retrieved from the complex process equipment case database. Secondly, the classification and retrieval of the model are realized, and the process equipment of retrieval association mapping with 3D MBD model is called out. The existing process equipment model is adjusted and modified to complete the rapid design of the process equipment of the product to be designed. Finally, a corresponding process equipment design system was developed and verified through a case study. The application of machine learning to the design of industrial equipment greatly shortens the development cycle of equipment. In the design system, the system learns from engineers, making them understand the design better than engineers. Therefore, it can help any user to quickly design 3D models of complex products.


2014 ◽  
Vol 614 ◽  
pp. 107-112
Author(s):  
Xiao Yu Yin ◽  
Xian Ping Xie ◽  
Zhen Li ◽  
Jian Gong Li ◽  
Ting Jun Wang ◽  
...  

Expert systems, or knowledge based systems, are programs in which the answer to a user-posed question is reached by logical or plausible inference rather than strictly by calculation, although calculation routines can form a major part of an expert system. Based on the integration of expert system technology and optimization technology, an intelligent computer aided design method for mine ventilation systems is proposed in this paper. Firstly, the structure and control algorithm of the intelligent design system are explored. Secondly, the knowledge types required for the mine ventilation expert system and the acquiring method of knowledge are discussed. Finally, the inference method of this expert system is put forward.


2002 ◽  
Vol 124 (2) ◽  
pp. 329-335 ◽  
Author(s):  
Akira Goto ◽  
Motohiko Nohmi ◽  
Takaki Sakurai ◽  
Yoshiyasu Sogawa

A computer-aided design system has been developed for hydraulic parts of pumps including impellers, bowl diffusers, volutes, and vaned return channels. The key technologies include three-dimensional (3-D) CAD modeling, automatic grid generation, CFD analysis, and a 3-D inverse design method. The design system is directly connected to a rapid prototyping production system and a flexible manufacturing system composed of a group of DNC machines. The use of this novel design system leads to a drastic reduction of the development time of pumps having high performance, high reliability, and innovative design concepts. The system structure and the design process of “Blade Design System” and “Channel Design System” are presented. Then the design examples are presented briefly based on the previous publications, which included a centrifugal impeller with suppressed secondary flows, a bowl diffuser with suppressed corner separation, a vaned return channel of a multistage pump, and a volute casing. The results of experimental validation, including flow fields measurements, were also presented and discussed briefly.


Author(s):  
Sheng Hu ◽  
Sang-Ick Lee ◽  
Lubinda F. Walubita ◽  
Fujie Zhou ◽  
Tom Scullion

In recent years, there has been a push toward designing long-lasting thick hot mix asphalt (HMA) pavements, commonly referred to as a perpetual pavements (PP). For these pavements, it is expected that bottom-up fatigue cracking does not occur if the strain level is below a certain limit that is called the HMA fatigue endurance limit (EL). This paper proposed a mechanistic-empirical PP design method based on this EL concept. The ELs of 12 HMA mixtures were determined using simplified viscoelastic continuum damage testing and the influential factors were comparatively investigated. It was found that HMA mixtures seem to have different EL values based on mix type and test temperatures. There is not just a single EL value that can be used for all mixtures. Thus, default EL criteria for different mixtures under different climatic conditions were developed and incorporated into the Texas Mechanistic-Empirical Flexible Pavement Design System (TxME). As a demonstration and case study, one Texas PP test section with weigh-in-motion traffic data was simulated by TxME. The corresponding TxME inputs/outputs in terms of the PP structure, material properties, traffic loading, environmental conditions, and ELs were demonstrated. The corresponding TxME modeling results were consistent with the actual observed field performance of the in-service PP section.


2020 ◽  
Vol 14 (4) ◽  
pp. 681-695
Author(s):  
I. V. Кusоvskaya ◽  

Introduction. The paper focuses on the design of individual educational routes for students of higher educational institutions in a competency-based learning environment. Individual educational routes assume particular importance for teaching a foreign language in multilevel and multidirectional groups. The objective of the study is to design individual educational routes for students studying German at a technical university. The achievement of this objective involves specification of the concept, scope, and stages of the design of individual educational routes and corresponding pedagogical conditions. Materials and Methods. The object of the research is the process of designing individual educational routes for Bachelor and Specialist’s degree students learning the discipline “Foreign Language” at Irkutsk State Transport University. The development of individual educational routes based on design method is a joint activity of teacher and students at the stages of motivational support, goal-setting, content and resource support. Results. The outcome of the research is designed individual educational routes of the adaptive, developmental and creative type for the students learning German. Conclusion. The practical significance of the study lies in the individualization and variability of competency-based learning, and the rational organization of individual work based on the knowledge of the German language. Prospects for further study of the issue entails reflective analyses of the adoption of the designed individual educational routes and their optimal correction. Keywords: design, individual educational route, technical university, German teaching.


2015 ◽  
Vol 9 (1) ◽  
pp. 150-156 ◽  
Author(s):  
Chuang Lu ◽  
Bo Wang ◽  
Xiu-Yuan Peng ◽  
Xiao-Lei Hou ◽  
Bing Bai ◽  
...  

Management plan model of agricultural planting information technology research and application of design system for agricultural production and digital has important theoretical and practical significance of agricultural planting. The study concluded, extracted the relevant agricultural planting design theory and technology research based on the show, applying the system analysis principle and mathematical modeling technique, the construction and perfection of the cropping system, ecological regionalization, precision farming and productivity of quantitative analysis of the agricultural planting management knowledge model, by using the technology of software component, with GIS as spatial information management platform, the establishment of the digital system design based on GIS and model plant. The system has realized the design of cropping system of regional cropping information standardization management and different levels of for the realization of crop planting design, quantitative and digital laid the foundation.


Sign in / Sign up

Export Citation Format

Share Document