Stress and Strain Analysis of Asphalt Pavement Impacted by Temperature and Load

2014 ◽  
Vol 638-640 ◽  
pp. 1177-1184
Author(s):  
Jian Li

Temperature and load are the major factors of road surface deformation. This paper studies how the temperature causes the road surface deformation and what the deformation trend is. A simplified model of the pavement structure and double round load loading mode were adopted respectively to analyze the stress and strain changes of road surface result of the load and the coupling effect of temperature and load. The major conclusions drew on this study are: stiffness modulus of asphalt mixture attenuates rapidly as the temperature increases, and thereby results in a significant shear deformation of asphalt pavement. At the same temperature, compressive stress decreases with the increasing of load and the deepening of the pavement structure. The influence of coupling effect of temperature and load is more significant than a single temperature or load factor. Under different coupling effect of temperature and load circumstances, the pavement structure influenced mostly by the shear stress is located 3-9cm underneath the surface.

2013 ◽  
Vol 723 ◽  
pp. 729-736
Author(s):  
Hong Zhi Li

In order to study the cracks resisting mechanism of large stone asphalt mixture base, a multi-layer elastic theory program was used to calculate the loading stress in different pavement structures. Then a Finite Element model was established based on a twinkling heat conduct hypothesis to calculate temperature stress and strain of pavement structure when temperature dropped. Finally, the stress and strain of all the structural layers was calculated considering the coupling effect of loading and temperature. It is found that temperature stress which is caused by temperate quick dropped is far more lager than loading stress cause by standard loading, while considering the co-effect of vehicle loading and temperature quickly dropped. Thus it is revealed that cracking in pavement is mainly caused by temperature quickly dropped. By contrast, it is found that pavement stress and strain caused by loading and temperature of the structure with asphalt macadam mixture (ATB30) base are less than that of the conventional semi-rigid pavement. Finally, an asphalt macadam mixture base applied in asphalt pavement structure is believed to be an efficient way in reducing asphalt pavement cracking.


2012 ◽  
Vol 256-259 ◽  
pp. 1748-1753
Author(s):  
Bin Zhao ◽  
Pei Wen Hao

As vehicle flow on arterial highway in Inner Mongolia sharply increased, the originally designed natural increase rate of 8% per year has been exceeded on the vehicle flow in some sections. According to statistics, monthly average vehicle flow on major section of G6 expressway has reached a standard flow of 67478 vehicles per day and night, of which in 70-80% are large ones for coal transportation. Therefore, pavement load and road capacity have exceed the designed expressway load capacity. At present, semi-rigid base asphalt pavement structure is still widely used for high-grade highway pavement in Inner Mongolia. With years of construction for such pavement structure, a great deal of valuable experience has been gained on construction technology. However, there are still a few deficiencies in the quality of raw materials, gradation control of asphalt mixture and adjustment of equipment, etc. Hohhot circle expressway connects with the G6 and G7 expressways, suffering from problems such as large vehicle flow and load overweight. This paper introduced a key technique that should be properly controlled during construction of such pavement structure, emphasized technique control and management of the following aspects, i.e. ballast sizes and gradation control, asphalt concrete mixture, adjustment of pavers, validation of mixing proportion in production and reasonable arrangement of process, and summarized corresponding technical measures taken during construction of asphalt pavement in this project.


2021 ◽  
Vol 16 (2) ◽  
pp. 48-65
Author(s):  
Audrius Vaitkus ◽  
Judita Gražulytė ◽  
Andrius Baltrušaitis ◽  
Jurgita Židanavičiūtė ◽  
Donatas Čygas

Properly designed and maintained asphalt pavements operate for ten to twenty-five years and have to be rehabilitated after that period. Cold in-place recycling has priority over all other rehabilitation methods since it is done without preheating and transportation of reclaimed asphalt pavement. Multiple researches on the performance of cold recycled mixtures have been done; however, it is unclear how the entire pavement structure (cold recycled asphalt pavement overlaid with asphalt mixture) performs depending on binding agents. The main objective of this research was to evaluate the performance of cold in-place recycled asphalt pavements considering binding agents (foamed bitumen in combination with cement or only cement) and figure out which binder leads to the best pavement performance. Three road sections rehabilitated in 2000, 2003, and 2005 were analysed. The performance of the entire pavement structure was evaluated in terms of the International Roughness Index, rut depth, and pavement surface distress in 2013 and 2017.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 889 ◽  
Author(s):  
Chengdong Xia ◽  
Songtao Lv ◽  
Lingyun You ◽  
Dong Chen ◽  
Yipeng Li ◽  
...  

Although the rutting resistance, fatigue cracking, and the resistance to water and frost are important for the asphalt pavement, the strength of asphalt mixture is also an important factor for the asphalt mixture design. The strength of asphalt mixture is directly associated with the overall performance of asphalt mixture. As a top layer material of asphalt pavement, the strength of asphalt mixture plays an indispensable role in the top structural bearing layer. In the present design system, the strength of asphalt pavement is usually achieved via the laboratory tests. The stress states are usually different for the different laboratory approaches. Even at the same stress level, the laboratory strengths of asphalt mixture obtained are significantly different, which leads to misunderstanding of the asphalt mixtures used in asphalt pavement structure design. The arbitrariness of strength determinations affects the effectiveness of the asphalt pavement structure design in civil engineering. Therefore, in order to overcome the design deviation caused by the randomness of the laboratory strength of asphalt mixtures, in this study, the direct tension, indirect tension, and unconfined compression tests were implemented on the specimens under different loading rates. The strength model of asphalt mixture under different loading modes was established. The relationship between the strength ratio and loading rate of direct tension, indirect tension, and unconfined compression tests was adopted separately. Then, one unified strength model of asphalt mixture with different loading modes was established. The preliminary results show that the proposed unified strength model could be applied to improve the accurate degree of laboratory strength. The effectiveness of laboratory-based asphalt pavement structure design can therefore be promoted.


2011 ◽  
Vol 97-98 ◽  
pp. 290-296
Author(s):  
Wei Guang Li ◽  
Zhi Dong Han ◽  
Zhen Bei Lv ◽  
Yan Hong Duan

It is important to reduce asphalt mixture strong absorption characteristics to improve anti-rutting ability and reduce the urban heat island effect. This paper firstly studies the suction and exothermic regular pattern of existing three types, five kinds of asphalt pavement structure. It turns out that there are differences in suction and exothermic characteristics of different types of pavement structure. Suspension close-grained type structure has higher adiabatic heating; gap-type skeleton has faster speed of suction and exothermic; and dense skeleton has more total quantity of heat storage. Accordingly, test and analysis of cooling effect of Gap-type skeleton asphalt pavement has conducted by adopting smear reflective materials to reduce reflectance and surface adding insulation materials, The results show that reducing reflectivity is the best way which can reduce by 5 centigrade around. In addition , improving effectiveness has also been studied by adding light-colored stone partly replacing mineral aggregate, and substituting busing mullite for aggregate below2.36 mm is the best cooling way ,which can reduce by 3.3 centigrade.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Wang ◽  
Zepeng Fan ◽  
Jiupeng Zhang

The rutting performance of asphalt pavement structure relies on the high temperature properties of asphalt mixture as well as the pavement structure and thickness. In order to investigate the influence of the structure and thickness, a full-depth wheel tracking test is developed in this research by improving the conventional wheel tracking test apparatus. The newly proposed test method is capable of varying its load speed and load size, controlling its specimen temperature gradient, and simulating the support conditions of actual asphalt pavement. The full-depth wheel tracking test based rutting performance evaluation of different asphalt pavement structures indicates that it is not reasonable to explain the rutting performance of asphalt pavement structure from the point of view of single-layer asphalt mixture rutting performance. The developed full-depth wheel tracking test can be used to distinguish rutting performance of different asphalt pavement structures, and two of five typical asphalt pavement structures commonly used in Shanxi Province were suggested for use in practical engineering.


2013 ◽  
Vol 718-720 ◽  
pp. 1855-1860
Author(s):  
Chuang Min Li ◽  
An Liu ◽  
Yun Chen

With the publication of Standard test methods of bitumen and bituminous mixtures for highway engineering " in 2011, the common asphalt mixture rutting test can be carried out in accordance with the T0719-2011 in China. But in our country, the current " Technical specifications for construction of highway engineering asphalt pavement " published in 2004 describes that the nominal maximum size of more than 19mm dense-graded asphalt concrete or asphalt treated permeable base is not suitable for carrying out specimens rutting test in accordance with the size of 300mm× 300mm ×50mm, so there is no corresponding dynamic stability requirements to the commonly used AC-25 type asphalt mixture in pavement layer in China. Combined with the Dao-He expressway pavement structure design and used the T0719-2011 method of AC-25 type different thickness rutting test, the relationship between the rutting specimen thickness and the dynamic stability is established. With reference to the requirements of asphalt pavement construction specifications and pavement structure layer on high temperature stability, the 8cm thick AC-25 common asphalt mixture dynamic stability criteria is put forward. Analyzing on AC-25 with No. 50 pure asphalt mixture dynamic stability test data, the dynamic stability requirements is put forward as validation for AC-25 asphalt mixture dynamic stability criteria in Dao-He expressway.


2011 ◽  
Vol 71-78 ◽  
pp. 1791-1794 ◽  
Author(s):  
Xue Dong Guo ◽  
Jian Cao ◽  
Xiang Yang Fang

At present, AC, a major gradation type of asphalt mixture, is widely used in highway construction in China. Due to internal large porosity, the water of road surface draining quickly, OGFC pavement is also widely used. However, water is easier flow into OGFC asphalt pavement than ordinary asphalt pavement. So the water stability of OGFC asphalt pavement is particular important. We get the following conclusion by the test of residual water and water stability based on the two gradations asphalt mixture of AC and OGFC. Residual water stays in AC asphalt mixture for about one week.While the residual water stays in OGFC asphalt mixture for more than three months. When the residual water is 50% in AC, the water stability is the worst. When the residual water is 75% in OGFC, the water stability is the worst.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 414
Author(s):  
Jiancun Fu ◽  
Aiqin Shen

In cold regions, many types of structural damages are caused by the frost heaving of asphalt pavements. Hence, it is important to quantitatively determine the frost-heaving effect of asphalt pavement using a mechanical method to control frost-heaving damage. In this study, first, the internal voids of the asphalt mixture were regarded as a single void, and the water phase transition generating the freezing water in the voids was simulated using a simplified hollow sphere model to create a uniform internal pressure. Second, the prediction equation of the equivalent linear expansion coefficient was proposed by taking the phase transition of water in the saturated asphalt mixture voids into account. A step function was used during the phase transition of water to determine the sudden change in the equivalent linear expansion coefficient, heat capacity, density, and thermal conductivity. Finally, the typical cooling conditions were simulated with the water phase transition and the nonwater phase transition. The experimental results showed that the proposed model could accurately simulate the effect of frost heaving. Higher stress and strain were generated on the surface and in the interior of the pavement, and the positions of maximum stress and strain occurred on the pavement surface under the frost-heaving conditions. The compressive strength of the asphalt mixture in a uniaxial compression test is about 4.5–6 MPa with a single freeze–thaw cycle. Furthermore, when frost heaving occurs on the asphalt pavement between 5.8 and 6.5 MPa, the numerical simulation method can be used to calculate the internal stress of the structure, which found that the compressive stress under the frost-heaving condition was the same magnitude as the compressive strength under the freeze–thaw testing condition.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 623
Author(s):  
Bo Chen ◽  
Chunlong Xiong ◽  
Weixiong Li ◽  
Jiarui He ◽  
Xiaoning Zhang

Pavement surface texture features are one of key factors affecting the skid resistance of pavement. In this study, a set of stable and reliable texture measurement equipment was firstly assembled by using the linear laser ranging sensor, control system and data acquisition system. Secondly, the equipment was calibrated, and the superposition error of sensor and control system was tested by making a standard gauge block. Thirdly, four different kinds of asphalt mixture were designed, and their surface texture features were obtained by leveraging a three-dimensional laser scanner. Therefore, the surface texture features were characterized as one-dimensional profile features and three-dimensional surface features. At the end of this study, a multi-scale texture feature characterization method was proposed. Results demonstrate that the measurement accuracy of the laser scanning system in the x-axis direction can be controlled ranging from −0.01 mm to 0.01 mm, the resolution in the XY plane is 0.05 mm, and the reconstructed surface model of surface texture features can achieve a good visualization effect. They also show that the root mean square deviation of surface profiles of different asphalt pavements fluctuates greatly, which is mainly affected by the nominal particle size of asphalt mixture and the proportion of coarse aggregate, and the non-uniformity of pavement texture distribution makes it difficult to characterize the roughness of asphalt pavement effectively by a single pavement surface profile. This study proposed a texture section method to describe the 3D distribution of road surface texture at different depths. The macrotexture of the road surface gradually changes from sparse to dense starting from the shallow layer. The actual asphalt pavement texture can be characterized by a simplified combination model of “cone + sphere + column”. By calculating the surface area distribution of macro and microtextures of different asphalt pavements, it was concluded that the surface area of asphalt pavement under micro scale is about 1.8–2.2 times of the cutting area, and the surface area of macrotexture is about 1.4 times of the cutting area. Moreover, this study proposed texture distribution density to characterize the roughness of asphalt pavement texture at different scales. The SMA index can represent the macroscopic structure level of different asphalt pavements to a certain extent, and the SMI index can well represent the friction level of different asphalt pavements.


Sign in / Sign up

Export Citation Format

Share Document