A Distributed Algorithm for Data Collection in Low-Duty-Cycled WSNs

2014 ◽  
Vol 668-669 ◽  
pp. 1355-1358
Author(s):  
Feng Liu ◽  
Yu Fei Wang ◽  
Mu Lin

In order to prolong the lifetime of WSNs, low-duty-cycled scheduling is a widely used strategy. However, there exists high latency with traditional routing algorithms. In this paper, we model the data collection scheme of WSNs to be a delay optimization problem and propose a distributed algorithm based on Network Utility Maximization. The proposed algorithm can distributed find an optimal routing to achieve minimal average end-to-end delay. The simulation results show that our algorithm performs better than the traditional shortest path algorithm on end-to-end delay with less control message.

Author(s):  
Viswanathan Ramasamy ◽  
Jagatheswari Srirangan ◽  
Praveen Ramalingam

In Intelligent Transport Systems, traffic management and providing stable routing paths between vehicles using vehicular ad hoc networks (VANET's) is critical. Lots of research and several routing techniques providing a long path lifetime have been presented to resolve this issue. However, the routing algorithms suffer excessive overhead or collisions when solving complex optimization problems. In order to improve the routing efficiency and performance in the existing schemes, a Position Particle Swarm Optimization based on Fuzzy Logic (PPSO-FL) method is presented for VANET that provides a high-quality path for communication between nodes. The PPSO-FL has two main steps. The first step is selecting candidate nodes through collectively coordinated metrics using the fuzzy logic technique, improving packet delivery fraction, and minimizing end-to-end delay. The second step is the construction of an optimized routing model. The optimized routing model establishes an optimal route through the candidate nodes using position-based particle swarm optimization. The proposed work is simulated using an NS2 simulator. Simulation results demonstrate that the method outperforms the standard routing algorithms in packet delivery fraction, end-to-end delay and execution time for routing in VANET scenarios.


Author(s):  
Andy Hidayat Jatmika ◽  
I Made Windra Yudistiana ◽  
Ariyan Zubaidi

One sector that greatly influences it is in terms of network security. This is due to the characteristics of the MANET network that are dynamic so that the MANET network is very easily disturbed by irresponsible parties. One of the attacks that can occur in MANET network is Route Request (RREQ) Flooding Attacks. In RREQ flooding attacks in the form of fake nodes that are outside the area of the network and broadcast RREQ to the destination node in the network, so that it meets the bandwidth capacity which results in a decrease in quality in determining the route of sending data or information to the destination node. To prevent the occurrence of RREQ flooding attacks, a prevention method for these attacks is required, namely the RREQ Flooding Attacks Prevention (RFAP). This method works by finding nodes that are likely to be malicious nodes then isolated from the network to be restored to normal nodes. This research will optimize the AODV and AOMDV routing protocols by adding RFAP prevention methods and knowing the performance of the two protocols in terms of throughput, average end-to-end delay and normalized routing load. Based on the results of the simulation, that the application of the method RFAP on AODV routing protocol can produce network quality is better than AOMDV protocol, both in terms of throughput, average end-to-end delay and normalized routing load.


Author(s):  
Ali H. Wheeb ◽  
Dimitris N. Kanellopoulos

Mobile ad-hoc networks (MANETs) are composed of mobile nodes communicating through wireless medium, without any fixed centralized infrastructure. Providing quality of service (QoS) support to multimedia streaming applications over MANETs is vital. This paper focuses on QoS support, provided by the stream control transmission protocol (SCTP) and the TCP-friendly rate control (TFRC) protocol to multimedia streaming applications over MANETs. In this study, three QoS parameters were considered jointly: (1) packet delivery ratio (PDR), (2) end-to-end delay, (3) and throughput. Specifically, the authors analyzed and compared the simulated performance of the SCTP and TFRC transport protocols for delivering multimedia streaming over MANETs. Two simulation scenarios were conducted to study the impact of traffic load and node speed (mobility) to their performance. Based on the simulation results, the authors found that the PDR and the end-to-end delay of TFRC are slightly better than those of SCTP in both scenarios. Additionally, the performance of SCTP is significantly better than TFRC in terms of throughput.


2018 ◽  
Vol 7 (3.16) ◽  
pp. 52
Author(s):  
Jothy. N ◽  
Jayanthi. K ◽  
Gunasundari. R

In the recent years, VANET is becoming a spectacular research area in wireless networks. The high mobility vehicular node in VANET dynamically changes the network topology resulting in highly unstable vehicle connectivity. This induces network partitioning and hence ensuring link availability remains to be a challenging task.  To surpass these issues, design of efficient VANET routing algorithms is necessary. The routing design for VANET scenario is highly complex and challenging making the existing AODV, greedy, cluster based routing algorithms to suffer from degraded link quality resulting in high end-to-end delay and significant packet loss. Although Opportunistic Neighbor Selection (ONS) scheme proves to be a better routing logic, it does not seem to always ensure link availability at road intersections, particularly in Indian road scenario, where multi road lane discipline is very hard to implement. To overcome these limitations, a combination of Modified Opportunistic Neighbor Selection (MONS) and Vehicle Localization (VL) routing logic for adoption in Indian road sector has been proposed in this paper. This paper addresses the connectivity challenges and provides better solution to achieve improved performance. In this work, two specific scenarios namely: varied mobility/node density rates is considered by treating the other fixed inorder to evaluate the suitability of the proposed logic in terms of packet delivery ratio, end-to-end delay.  


Author(s):  
Manoj Kumar Patel ◽  
MANAS RANJAN KABAT ◽  
Chita Ranjan Tripathy

Many multimedia group applications require the construction of multicast tree satisfying the quality of service (QoS) requirements. To support real time communication, computer networks need to optimize the Delay and Delay-Variation Bounded Multicast Tree (DVBMT). The problem is to satisfy the end-to-end delay and delay-variation within an upper bound. The DVBMT problem is known to be NP complete. In this paper, we propose an efficient core selection algorithm for satisfying the end-to-end delay and delay-variation within an upper bound. The efficiency of the proposed algorithm is validated through the simulation. The simulation results reveal that our algorithm performs better than the existing heuristic algorithms.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
R. Velmani ◽  
B. Kaarthick

Amidst of the growing impact of wireless sensor networks (WSNs) on real world applications, numerous schemes have been proposed for collecting data on multipath routing, tree, clustering, and cluster tree. Effectiveness of WSNs only depends on the data collection schemes. Existing methods cannot provide a guaranteed reliable network about mobility, traffic, and end-to-end connection, respectively. To mitigate such kind of problems, a simple and effective scheme is proposed, which is named as cluster independent data collection tree (CIDT). After the cluster head election and cluster formation, CIDT constructs a data collection tree (DCT) based on the cluster head location. In DCT, data collection node (DCN) does not participate in sensing, which is simply collecting the data packet from the cluster head and delivering it into sink. CIDT minimizes the energy exploitation, end-to-end delay and traffic of cluster head due to transfer of data with DCT. CIDT provides less complexity involved in creating a tree structure, which maintains the energy consumption of cluster head that helps to reduce the frequent cluster formation and maintain a cluster for considerable amount of time. The simulation results show that CIDT provides better QoS in terms of energy consumption, throughput, end-to-end delay, and network lifetime for mobility-based WSNs.


2017 ◽  
Author(s):  
Muskan Sharma

MANET is a network where mobile works as node and it is wireless, infrastructure-less network in which nodes can move freely and can change their positions also. It is wireless, so it needs more security than the wired network. We are using Enhanced CBDS technique here, so that we can save our network from Resource consumption and Byzantine attacks. Resource consumption attack can be detected by adding new security checks to the algorithms. If the battery and bandwidth usage of any node are not going as per optimized usage thresholds set. Byzantine Attack we will be detected as if acknowledgement is not received by source in desired time. Adding alarm packet in the CBDS technique is the Enhanced CBDS technique. It shows better results than the CBDS technique Enhanced CBDS technique is better than 2 ACK, BFTR and DSR on the basis of various parameters like packet delivery ratio, end to end delay, and throughput.


Author(s):  
Dimitris N. Kanellopoulos ◽  
Ali H. Wheeb

Multimedia applications impose different QoS requirements (e.g., bounded end-to-end delay and jitter) and need an enhanced transport layer protocol that should handle packet loss, minimize errors, manage network congestion, and transmit efficiently. Across an IP network, the transport layer protocol provides data transmission and affects the QoS provided to the application on hand. The most common transport layer protocols used by Internet applications are TCP and UDP. There are also advanced transport layer protocols such as DCCP and TFRC. The authors evaluated the performance of UDP, DCCP, SCTP, and TFRC over wired networks for three traffic flows: data transmission, video streaming, and voice over IP. The evaluation criteria were throughput, end-to-end delay, and packet loss ratio. They compared their performance to learn in which traffic flow/service each of these protocols functions better than the others. The throughput of SCTP and TFRC is better than UDP. DCCP is superior to SCTP and TFRC in terms of end-to-end delay. SCTP is suitable for Internet applications that require high bandwidth.


Author(s):  
Sulata Mitra ◽  
Priyodarshini Dhar

Background and Objective: Two different variants of secure routing algorithms are proposed in the present work. In both the variants a stable route is established between source and destination. Methods: The selected route is associated with the nodes having sufficient energy to establish the route and to transmit the data packets, minimum velocity to reduce the frequency of link failure, maximum distance from the source node to reduce the number of hops in the selected route, minimum number of neighbors to reduce the routing overhead. Each variant has two phases. In the first phase it is assumed that the selected route has no attackers. The first phase is made more realistic in the second phase by considering the presence of attacker in the selected route. In the first variant a node associated with the selected route overhears the transmission of the next forwarder node to detect an attacker node in the routing path. But a node may fail to overhear its next hop in presence of hidden node, due to limited overhear range etc. Such problem is eliminated in the second variant. In the second variant each node associated with the selected route searches its data packet buffer for the reception of the next data packet from its predecessor node associated with the same route and suspects the predecessor node as an attacker in case the next data packet is not found in the buffer. The performance of both the variants is compared on the basis of packet delivery ratio, throughput and average end-to-end delay. Results: The throughput and packet delivery ratio are higher in the second variant than the first variant whereas the average end-to-end delay is less in the second variant than the first variant. Conclusion: Moreover both the variants outperform the existing schemes in terms of packet delivery ratio, throughput and average end-to-end delay.


Sign in / Sign up

Export Citation Format

Share Document