Influence of Intermediate Course Gradation Type on Anti-Fatigue Performance of the Asphalt Pavement Structure

2014 ◽  
Vol 684 ◽  
pp. 191-194
Author(s):  
Zhao Hui Sun ◽  
Li Guang Chen ◽  
Guo Feng Yang ◽  
Bao Yang Yu

Three grading types of asphalt mixture are designed and respectively placed in intermediate course of asphalt concrete pavement with a typical semi-rigid base layer, the pavement structure model is established by the application of finite element software, the tensile stress at the bottom of intermediate course is analyzed under the wheel pressure of 1.5MPa, the finite element calculation results are led to the fatigue analysis software nSoft, the fatigue analysis results of intermediate course materials are obtained. The results show that the design gradation AC-20 mixture has excellent fatigue resistance in the pavement structure layer.

2012 ◽  
Vol 594-597 ◽  
pp. 1402-1406 ◽  
Author(s):  
Yue Zhang ◽  
Yun Long Zhao ◽  
Bao Yang Yu

In order to overcome the weakness of semi-rigidity base layer,the road performance of the SRX(Solution Road RomixSoilfix) stabilized base material and the mechanics response of asphalt pavement with the base layer stabilized by SRX have been studied in this paper. The CBR value and resilient modulus of SRX stabilized base material were given by indoor test. Based on the multiple layer elastic theory, both the mechanical responses of asphalt pavement structure with the SRX stabilized base and semi-rigid base were given, and according to the calculation results, the two kinds of pavement structure fatigue life were analyzed. The results have shown that the CBR value of SRX flexible material is greater than that of graded crushed stone; the SRX stable material can be used as pavement base layer, but the fatigue performance of SRX flexible base materials should be paid much attention.


2012 ◽  
Vol 256-259 ◽  
pp. 1748-1753
Author(s):  
Bin Zhao ◽  
Pei Wen Hao

As vehicle flow on arterial highway in Inner Mongolia sharply increased, the originally designed natural increase rate of 8% per year has been exceeded on the vehicle flow in some sections. According to statistics, monthly average vehicle flow on major section of G6 expressway has reached a standard flow of 67478 vehicles per day and night, of which in 70-80% are large ones for coal transportation. Therefore, pavement load and road capacity have exceed the designed expressway load capacity. At present, semi-rigid base asphalt pavement structure is still widely used for high-grade highway pavement in Inner Mongolia. With years of construction for such pavement structure, a great deal of valuable experience has been gained on construction technology. However, there are still a few deficiencies in the quality of raw materials, gradation control of asphalt mixture and adjustment of equipment, etc. Hohhot circle expressway connects with the G6 and G7 expressways, suffering from problems such as large vehicle flow and load overweight. This paper introduced a key technique that should be properly controlled during construction of such pavement structure, emphasized technique control and management of the following aspects, i.e. ballast sizes and gradation control, asphalt concrete mixture, adjustment of pavers, validation of mixing proportion in production and reasonable arrangement of process, and summarized corresponding technical measures taken during construction of asphalt pavement in this project.


2017 ◽  
Vol 730 ◽  
pp. 548-553
Author(s):  
Jing Ge ◽  
Hao Jiang ◽  
Zhen Yu Sun ◽  
Guo Jun Yu ◽  
Bo Su ◽  
...  

In this paper, we establish the mechanical property analysis of Single-walled Carbon Nanotubes (SWCNTs) modified beam element model based on the molecular structural mechanics method. Then we study the mechanical properties of their radial direction characteristics using the finite element software Abaqus. The model simulated the different bending stiffness with rectangular section beam elements C-C chemical force field. When the graphene curled into arbitrary chirality of SWCNTs spatial structure, the adjacent beam position will change the moment of inertia of the section of the beam. Compared with the original beam element model and the calculation results, we found that the established model largely reduced the overestimate of the original model of mechanical properties on the radial direction of the SWCNTs. At the same time, compared with other methods available in the literature results and the experimental data, the results can be in good agreement.


2011 ◽  
Vol 255-260 ◽  
pp. 3371-3375
Author(s):  
Jian Hong Gao

Based on the multi-layer elastic system model, a large general used finite element software is used to analysis in the paper. The conclusion of the most distortion lying the wheel load center and the law of the distortion with basal layer rigidity & thickness change are elicited. Above contents show the finite element method possesses extensive using foreground in the pavement structure analyse.


2012 ◽  
Vol 193-194 ◽  
pp. 1454-1460
Author(s):  
Ying Mei Yin

In order to simulate reflective cracking of asphalt overlays or semi-rigid asphalt pavements in lab and evaluate the reflective crack resistance performance of with and without interlayer, a finite element analysis model based on the asphalt pavement, of which the semi-rigid base has cracked, is conducted and established through some basic assumptions in this paper. According to the results of pavement mechanical analysis and some literatures review, a laboratory reflective cracking simulation model was designed to compare the resistances of reflective cracking of different mixture samples. In order to compare the reflective cracking of different test samples, a dense grade asphalt mixture AC-20I with and without interlayer were used in the test. The results shows that asphalt mixture beams containing geotechnical fabrics can effectively delay the appearance of the reflective cracking at the bottom of the asphalt mixture beam and evidently reduce the propagation speed of reflective cracking while the beams containing geogrid can also hold back reflective cracking to a certain extent, but not as much as geotechnical fabrics did. It was proved that the model designed through finite element analysis (FEA) can simulate the reflective cracking caused by load and evaluate the reflective cracking resistance performance of different asphalt mixtures well and asphalt mixtures with fabrics can mitigate and delay reflective cracking effectively.


2011 ◽  
Vol 255-260 ◽  
pp. 952-956
Author(s):  
Jian Ping Sun ◽  
Jian Ping Chen ◽  
Gang Li

The reasons why the producing of the difference in temperature distributing and thermal stresses of box aqueduct under solar radiation are analyzed. The difference in temperature distributing and thermal stresses are effectively simulated by the finite element software ANSYS.The calculation results indicate that concrete box aqueduct body inter-surface whatever along the longitudinal and transverse will produce considerable thermal stresses under solar radiation, and its value has exceeded the design of concrete tensile strength. Therefore, the thermal stresses under the solar radiation must be considered in the design of box aqueduct body structural. We should appropriately configure temperature reinforcing steel bar.


2009 ◽  
Vol 79-82 ◽  
pp. 1149-1152
Author(s):  
Hong Bing Guo ◽  
Shuan Fa Chen

The reflective cracking in asphalt surface is a technical problem that exists in the semi-rigid base asphalt pavement structure and the rigid base asphalt pavement structure, how to control its emergence and development is still a major problem for road engineering. At present, researches on the anti-cracking performance for Open-graded Large Stone asphalt Mix (OLSM) in China almost remain in the test road observations, very few study the mechanism of its anti-cracking from the mechanical point. Aiming at this problem, a method of using OLSM as the cracking relief layer is proposed, large mineral aggregate, low asphalt content and a great deal of void in OLSM can dissipate or absorb stress and strain around the crack. The 3-D finite element method is used to analyze the crack-alleviating layer of ordinary asphalt concrete and OLSM, and the large-scale commercial finite element software of ABAQUS is used to do numerical simulation analysis for the lean concrete base asphalt pavement structure with OLSM, the analysis result indicates that temperature-load coupling stress of OLSM are less than that of ordinary asphalt concrete. Depending on the test road on an expressway, research on the anti-crack mechanism of OLSM has been conducted. The investigation of the test road and the result of the theoretical calculation indicate that OLSM can prevent lean concrete base asphalt pavement from the reflective cracking effectively, OLSM has good anti-cracking performance, it is an effective material to alleviate the reflective cracking. As the crack-alleviating layer, OLSM can significantly enhance the anti-cracking ability of the semi-rigid base asphalt pavement structure and the rigid base asphalt pavement structure.


2014 ◽  
Vol 1049-1050 ◽  
pp. 464-468
Author(s):  
Chen Hui Jin ◽  
Bo Ming Zhao ◽  
Run Bo Bai

In the study of bridge pier’s dynamic characteristics, the modal analysis is the foundation of other dynamic analysis and is of great significance for studying other dynamic performance. Based on the dynamic theory of fluid-solid interface coupling, a 3D water-structure coupling finite element modal is established and computed by ANSYS. To verify the validity of the calculation results, the results of finite element software is compared with the analytical solutions in reference books. The analysis indicated that the results of finite element software are reasonable when the radius of bridge pier is five times the radius of water body. The ratio of water depth and the bridge pier’s height has a great influence on the change scale of bridge pier’s frequency. With the increase of bridge pier’s height-diameter ratio, the first three order natural vibration frequency is reduced.


Sign in / Sign up

Export Citation Format

Share Document