Specific Properties of Novel Two-Dimensional Square Honeycomb Composite Structures

2014 ◽  
Vol 695 ◽  
pp. 694-698 ◽  
Author(s):  
Mohd Ruzaimi Mat Rejab ◽  
W.A.W. Hassan ◽  
Januar Parlaungan Siregar ◽  
Dandi Bachtiar

Hexagonal honeycomb cores have found extensive applications particularly in the aerospace and naval industries. In view of the recent interest in novel strong and lightweight core architectures, square honeycomb cores were manufactured and tested under uniform lateral compression. A slotting technique has been used to manufacture the square honeycomb cores based on three different materials; glass fibre-reinforced plastic (GFRP), carbon fibre-reinforced plastic (CFRP) and self-reinforced polypropylene (SRPP). As semi-rigid polyvinyl chloride (PVC) foam was placed in each of unit cells to further stiffen the core structure. The core then was bonded to two skins to form a sandwich structure. The compressive responses of the sandwich structures were measured as a function of relative density. In this paper, particular focus is placed on examining the compression strength and energy absorption characteristics of the square honeycombs with and without the additional foam core. Comparisons in terms of specific strength and specific energy absorption have shown that the CFRP core offers excellent properties. The presence of the foam core significantly increases the energy absorption capability of overall structure and the SRPP core could potentially be used as an alternative lightweight core material in recyclable sandwich structures.

2017 ◽  
Vol 21 (3) ◽  
pp. 865-894 ◽  
Author(s):  
AR Nazari ◽  
H Hosseini-Toudeshky ◽  
MZ Kabir

In this paper, the load-carrying capacity and failure mechanisms of sandwich beams and panels with elastomeric foam core and composite laminate face sheets are investigated. For this purpose, the flexural behavior of laminated composite beams and panels (applied as face sheets) is firstly investigated under three-point bending and central concentrated loads, respectively. Then, the same examination is conducted for the sandwich beams and panels, in which the proposed elastomeric foam is utilized as the core material. It is shown that the failure mechanisms which are associated to the core in the sandwich structures with crushable foams are not considered in the examined sandwich structures. The collapse of the sandwich specimens, examined here, is observed due to the failure of the skins in some steps. By multi-step collapse of these specimens via separately failure of the top and bottom skins, a considerable amount of energy is absorbed between these steps. Due to non-brittle behavior of the core material under loading, a large compression resistance is observed after failure of the top skin which led to the recovery of the load-carrying capacity in the sandwich beams. A similar behavior for the sandwich panels led to the increase of the ultimate strength after appearance of the failure lines on the top skin. The general outcomes of this investigation promise a good influence for the application of elastomeric foam as core material for sandwich structures.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Łukasz Święch ◽  
Radosław Kołodziejczyk ◽  
Natalia Stącel

The work concerns the experimental analysis of the process of destruction of sandwich structures as a result of circumferential shearing. The aim of the research was to determine the differences that occur in the destruction mechanism of such structures depending on the thickness and material of the core used. Specimens with a Rohacell foam core and a honeycomb core were made for the purposes of the research. The specimen destruction process was carried out in a static loading test with the use of a system introducing circumferential shear stress. The analysis of the tests results was made based on the load-displacement curves, the maximum load, and the energy absorbed by individual specimens. The tests indicated significant differences in the destruction mechanism of specimens with varied core material. The specimen with the honeycomb core was characterized by greater stiffness, which caused the damage to occur locally in the area subjected to the pressure of the punch. In specimens with the foam core, due to the lower stiffness of that core, the skins of the structure were bent, which additionally transfers compressive and tensile loads. This led to a higher maximum force that the specimens obtained at the time of destruction and greater energy absorption.


1974 ◽  
Vol 25 (4) ◽  
pp. 271-286 ◽  
Author(s):  
J P H Webber

SummaryThe governing elasticity equations for sandwich shells of double curvature are discussed. No restriction is placed on the thickness of the honeycomb core, and the faces are taken to be made up from fibre reinforced plastic laminations. Some numerical results are given for a circular cylinder subjected to uniform internal radial loading. The results show the importance of treating the core as a thick shell, and of including the bending effects and coupling terms in the laminated faces.


2018 ◽  
Vol 25 (4) ◽  
pp. 649-660
Author(s):  
Aslan Abbasloo ◽  
Mohamad Reza Maheri

Abstract Sandwich panels made of fibre-reinforced plastic (FRP) skins and a honeycomb core can be effectively damped through the choice of the skin and especially of the core materials. Because the core is often highly damped, a lateral deflection that causes more shearing of the core than bending of the skin increases sandwich damping. Aside from the skin and the core material properties, the shearing/bending ratio depends on a number of other, often interacting, factors, including the sandwich planar as well as transverse dimensions, the particular modal pattern in which the panel vibrates and its relationship to the type of skin layup, as well as the panel end conditions. In the present work, using a simple, first-order shear deformation theory, damping results have been produced for simple modes of vibration of a sandwich panel comprising composite skins and a damped honeycomb core, demonstrating the mechanisms by which the above factors affect the FRP skin/honeycomb core sandwich damping.


Author(s):  
Cihan Kaboglu

Sandwich structures are popular in applications in which the weight of the component affects the efficiency, especially in the aviation and aerospace industries. This study aims to understand the impact behaviour of sandwich structures with different core materials. Sandwich structures are manufactured with glass fibre reinforced polymer skins and balsa wood, polyethylene terephthalate (PET) and polyvinyl chloride (PVC) core through resin infusion under flexible tools. Three different core materials were tested and compared using the damaged area of the back face of the sample. The effect of the core materials on the mechanical behaviour of the structures is crucial. The results showed that the microstructure of the core materials plays an important role, because althoughthe density of balsa wood is greater than the density of PET and PVC, the structures having PVC and PET as core materials undergo less damage than those having balsa wood as a core material. Keywords: Sandwich composite, impact behaviour, core materials.


Author(s):  
Dongjie Ai ◽  
Yuansheng Cheng ◽  
Jun Liu ◽  
Jianhu Liu ◽  
Haikun Wang ◽  
...  

Sandwich panel structures, which consist of two thin faces and low relative density cores, can significantly mitigate the possibilities of panel fractures. In the present paper, numerical simulations are conducted to study the deformation and fracture modes of sandwich structures under near-field underwater blasts and contact underwater blasts. Two different core materials are employed, namely aluminum foam and PVC foam. Main focus of this paper was placed to (i) study the failure mechanisms and energy absorption characteristics of sandwich structures in typical conditions, (ii) to demonstrate the benefits of such structures compared with solid plates of equal weight, and (iii) to obtain the properties of withstanding underwater explosion for single core material sandwich panels. In addition, the effects of panel thickness configuration and core height on deformation and energy absorption of the plates were explored. Results indicated that sandwich structures showed an effective reduction in the maximum panel deflection compared with a monolithic plate of same mass. The design parameters have great impacts on the results.


2021 ◽  
Author(s):  
Miguel Nuño ◽  
Jannik Bühring ◽  
Narasimha Rao Mekala ◽  
Kai-Uwe Schröder

Abstract Sandwich structures possess a high bending stiffness compared to monolithic structures with a similar weight. This makes them very suitable for lightweight applications where high stiffness to weight ratios are needed. Most common manufacturing methods of sandwich structures involve adhesive bonding of the core material with the sheets. However, adhesive bonding is prone to delamination, a failure mode which is often difficult to detect. In this paper, the results of delamination testing of fully additive manufactured (AM) AlSi10Mg sandwich structures with pyramidal lattice truss core are presented. To characterise the bonding strength, climbing drum peel tests and out-of-plane tensile tests are done. The thickness of the faces and the diameter of the struts is 0.5 mm, while the core is 2 mm thick. The inclination of the struts is 45°. To predict the expected failure loads and modes, analytical formulas are derived. The analytics and tests are supported by finite element (FE) calculations. From the analytic approaches, design guidelines to avoid delamination in AM sandwich structures can be followed. The study shows, that critical ratios for face sheet thickness to strut diameter can be determined, to define if the structure tends to delaminate under certain loads. Those ratios are mainly influenced by the strut inclination. The peel tests resulted in face yielding, which can also be followed from the analytics and numerics. The out-of-plane tensile tests didn't damage the structure.


Author(s):  
Jonas W. Ringsberg

Abstract Composite sandwich ships have laminated joints that contribute to a significant part of the ship’s weight. Their construction requires an extensive number of man-hours. There is great potential for weight and production-time-reduction through alternative joint designs. According to class rules, one is not allowed to benefit from the load-carrying capability of the core, i.e. the strength characteristics of the core shall be disregarded and geometry at the joint location is disregarded as well. The objective of the current investigation was to investigate the possibility of constructing a joint where the load-carrying capability of the foam core is accounted for, leading to a reduction in weight and production time. One specific joint in a 23 m composite sandwich catamaran was selected for study — a side wall-wet deck T-joint. This joint is considered to be crucial for the structural integrity of the current vessel. A global finite element (FE) model of the catamaran was designed and analysed in ANSYS. The loads and boundary conditions were applied to the global model according to DNV GL’s HSLC rules. Two local FE models of the joints (2D and 3D) were utilized for a parametric analysis with respect to structure response (stress concentrations and compliance with failure and fracture criteria). Finally, the results and conclusions from the study show the possibilities and advantages of incorporating the foam core material as a load-carrying member in joint design without compromising safety.


2016 ◽  
Vol 879 ◽  
pp. 2419-2427 ◽  
Author(s):  
Simon M. Brückmann ◽  
Horst E. Friedrich ◽  
Michael Kriescher ◽  
Gundolf Kopp ◽  
Roman Gätzi

On modern vehicles, the demand is made to be in every respect as efficient as possible. A technical method to increase energetic efficiency is to reduce the vehicle mass through the implementation of lightweight construction measures. The energy consumption decreases by that and the vehicle dynamics behavior of conventionally and alternatively respectively electrically powered vehicles increases. In the department Lightweight and Hybrid Design Methods of the Institute of Vehicle Concepts in Stuttgart in collaboration with 3A Composite Core Materials, a method which allows to realize sandwich structures for automotive structural applications analytically and conceptually, is developed. The development method based on material and component testing and material values would be determined at different loads, for example in pressure and in-plane tests. These values are transmitted into the analytical determination of so called failure mode maps to derive appropriate sandwich structures. With novel sandwich structures the objectives of high structural stiffness and strength are tracked, as well as a high level of energy absorption potential. By function integrating the potential of lightweight construction, depending on the energy absorption per structural weight, can be further increased. Accompanying tests on generic structures are made to validate the failure behavior. Also the influence of core material on the deformation behavior is examined. The results from the tests are transferred to a vehicle front structure of a planned lightweight vehicle of class L7E called "Safe Light Regional Vehicle" (SLRV). The behavior of the structure is examined in static and dynamic tests. The energy absorbing capacity can be further increased by geometric optimization and the use of different core materials. The research on sandwich materials is part of the research project Next Generation Car (NGC) of the DLR and represents in terms of the new vehicle concept SLRV in sandwich design a novel vehicle concept of this joint project.


Sign in / Sign up

Export Citation Format

Share Document