Research on Special Energy Aggregation Structure with Fractal Characteristics

2015 ◽  
Vol 719-720 ◽  
pp. 249-257
Author(s):  
Jin Hong Luo ◽  
Hui Liu

A kind of special energy aggregation structure is analyzed. The special structure can gather electromagnetic energy. The paper summarizes features of the structure and indicates that the structure is a fractal. By analyzing the fractal characteristics, deduces the math iterative that can produce the parameter matrix of the structure. Mathematical model is done for this special energy aggregation structure. A special energy aggregation structure is designed by the mathematical model. The experimental results proved that the sample has functions of gathering electromagnetic energy. The results prove that the mathematical model for the special energy aggregation structure is built correctly and effectively. The paper provides the basis of mathematical analysis for researching on energy aggregation and transmission mechanism of this structure.

Author(s):  
Dawei Liu ◽  
Zhenzhen Lv ◽  
Bingbing Li

In order to establish the design method of a noncircular face gear (NFG) with intersecting axes, the meshing theory of this gear is investigated based on the principle of space gear meshing. A generalized approach for designing closed pitch curve of the NFG with intersecting axes was proposed based on Fourier series. The mathematical model of the NFG generated by a shaper cutter was established. The fundamental design parameters of the gears were defined, with the principle for determining their values discussed. The prototype of a NFG was machined by 5-axis CNC milling and the motion rule was tested. Experimental results verify the feasibility of the innovative transmission mechanism and the correctness of the mathematical model of NFG with intersecting axes.


2010 ◽  
Vol 126-128 ◽  
pp. 545-550 ◽  
Author(s):  
Wen Ji Xu ◽  
W. Wang ◽  
Xu Yue Wang ◽  
Gui Bing Pang

The drilling burr is taken as the research object. A mathematical model of electrochemical deburring (ECD) is established and the effects of main influencing factors, such as inter-electrode gap, applied voltage and deburring time, on burr height have been analyzed. The results show that the deburring time increases with the increase of initial burr height, inter-electrode gap, with the decrease of volume of electrochemical equivalent of the workpiece material, conductivity of electrolyte and applied voltage. The deburring time for various burr heights can be predicted by the mathematical model. The calculated results obtained from the mathematical model are approximately consistent with the experimental results. The results show that initial burr height h0=0.722mm is removed, and the fillet radius R=0.211mm is obtained.


2011 ◽  
Vol 128-129 ◽  
pp. 1010-1014
Author(s):  
Rui Wu ◽  
Dan Wen Zhang ◽  
Juan Sun

The twiste angle has a great effect on shaping law and stability of Numerical Controlled Electrochemical Machining (NC-ECM) process. In order to avoid the disadvantages caused by twiste angle, a methode of study shaping law by dispersing cathode working face in NC-ECM was proposed, and a mathematical model of the shaping law with the effects of twiste angle has been established in this paper. The mathematical model disclosed the relationship of twiste angle β, feeding velocity vf and thickness of removal material h in NC-ECM. Theoretical and experimental results show the the mathematical model of shaping law described in this paper can be considered as a useful reference and is helpful for the analysis of the NC-ECM and general ECM process.


2012 ◽  
Vol 538-541 ◽  
pp. 2536-2542
Author(s):  
Zhao Jun Li ◽  
Yu Ling Zhang ◽  
Tao Mao ◽  
Xu Juan Yang

A hydraulic excavator is taken as the object to study. Considering the characteristics of slewing transmission mechanism of hydraulic excavator, the torsional vibration equation is established by the finite element method. According to the torsional vibration equation, the effects of the equivalent moment of inertia of working device on the torsional dynamic properties of slewing transmission mechanism are analyzed. Using the optimization theory, the mathematical model is built, which is by means of the equivalent moment of inertia of working device as objective function and by means of the position parameters of the working device as design variables. Based on the mathematical model, the optimization of torsional dynamic properties of slewing transmission mechanism is studied. Finally, a numerical example is presented.


Author(s):  
Victor Olenin Ramírez-Beltrán ◽  
Luis Adrian Zuninga Avilés ◽  
Rosa Maria Valdovinos-Rosas ◽  
Jose Javier Reyes-Lagos ◽  
Giorgio Mackenzie Cruz-Martínez

The experimental results of forces and efforts derived from the opening of incisions in the orbital cavity in a pig’s head are presented in this article. The different areas of the incision openings are related to the needs at the incision procedure for a dacryocystorhinostomy. In terms of the experimental procedure, an origin and a plane are defined so as to allow the location of the opening of the incision. The incisions are retracted along an axis of said origin. This procedure has been based on the mathematical model developed for this work, which consists of a procedure for determining the behavior of an incision when a force is applied to retract the skin. The experimental data obtained, suggests the existence of an almost linear relationship between the increment of resistance in relation to the time obtained for each opening, the same of which is deemed to be consistent with the behavior of an elastic material.


1999 ◽  
Vol 122 (4) ◽  
pp. 734-738 ◽  
Author(s):  
Guangjun Zhang ◽  
Liqun Ma

The principle of structured light 3-D vision is introduced, and using projective and perspective transformations, the mathematical model of grid structured light based 3-D vision inspection is established in homogeneous coordinate system in this paper. Based on the image feature analysis of grid structured light, a calibration method of grid structured light based 3-D vision inspection is proposed, and experimental results are also presented. This method is easy, efficient and fast to carry out. It simplifies the calibration process while guaranteeing its accuracy. [S1087-1357(00)00703-6]


2013 ◽  
Vol 561 ◽  
pp. 54-58
Author(s):  
Xian Kui Zeng ◽  
Chang He Yang ◽  
Ze Shuai Song ◽  
Shu Hong Zhao

According to studying the mechanism of open mill mixing in low temperature and its intelligent mixing theory, based on the analysis of the experimental results getting from the self-developed XK-160E type open mill, we established a mathematical model for predicting the mix Mooney viscosity. The inspection and verification of mathematical model results showed that the predicted Mooney viscosity was very close to the practical value indicating a good predictive effect.


Author(s):  
C. S. Tsai ◽  
Wen-Shin Chen ◽  
Bo-Jen Chen

Recently, the earthquake proof technology has been acknowledged to be able to ensure the safety of the structures effectively during earthquakes. In this paper, two advanced buckling restrained braces (BRBs) that include multi-curved reinforced BRB and simplified reinforced BRB are presented. These two braces not only improve the disadvantages of traditional buckling restrained braces but also are more economic than the traditional ones. In order to understand the behaviors of advanced buckling restrained braces, the component tests of the advanced buckling restrained braces were carried out in the Department of Civil Engineering, Feng Chia University, Taichung, Taiwan. The experimental results illustrate that the behaviors of the advanced buckling restrained braces were very stable, as well as the maximum tension forces are close to the maximum compression forces. Furthermore, the Wen’s model in an increment form was utilized to simulate the behaviors of the advanced buckling restrained braces under cyclic loadings. The comparison between the experimental and numerical results shows that the mathematical model could simulate the behaviors of the advanced BRBs well.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Fushen Ren ◽  
Tiancheng Fang ◽  
Xiaoze Cheng

Particle jet impact drilling technology is an efficient method which mainly uses high-velocity particles to break rock. As the important criterion for evaluating rock-breaking effect, rock-breaking depth and damage area were studied in this paper. Firstly, a particle jet impact rock-breaking test device was developed, and laboratory experiments have been carried out. Then, based on the spherical cavity expansion theory, the mathematical model of rock-breaking depth and damage area under particle jet impact was established. Afterward, the effect of water-jet impact velocity, impact angle, and particle diameter on rock-breaking depth and damage area was analyzed by comparing experimental results and mathematical calculation. The results show that rock-breaking depth and damage area would increase with increase of water-jet impact velocity and decrease slightly with increase of particle diameter. And the combination of 8° and 20° is recommended for nozzle layout. The experimental results and mathematical calculation are basically consistent, which could verify the correctness of the mathematical model. The study has significance for development and application of particle jet impact rock-breaking technology and perfection of theoretical research.


Sign in / Sign up

Export Citation Format

Share Document