Analysis about the Work Space of a 3-RPR Parallel Mechanism Based Wind Tunnel Experiment Platform

2015 ◽  
Vol 741 ◽  
pp. 646-650
Author(s):  
Yong Jin Hu ◽  
Wen Jia Chen ◽  
Lu Yang Li ◽  
Jian Zhang ◽  
Zi Yan Shao

This paper introduces the characteristics of a 3-RPR parallel mechanism based on the wind tunnel experiment platform, makes use of the constraint condition of the inverse position solution of the structure, and uses MATLAB software to draw images of their work space and analyze the impact of the dimensional parameters of wind tunnel platform on the scope of work space, and it provides a theoretical basis for the design and practical of wind tunnel test platform.

Author(s):  
Daniel Barcarolo ◽  
Yann Andrillon ◽  
Erwan Jacquin ◽  
Alain Ledoux

The accurate evaluation of wind loads applied on floating offshore structures is extremely important as they are in specific conditions one of the dimensioning criteria for the mooring design. Nowadays these loads are mainly assessed through wind tunnel tests performed at model scale. Estimating realistic wind loads however, remains a big challenge. The complexity and associated simplification level of FPSO topside structures, the scale effects and the establishment of the atmospheric boundary layer imply that many simplifications are to be made. Typically, the FPSO topside is greatly simplified and equivalent blocs of wired frame are used. Today with the evolution of CFD software, and the increase of the meshing capacity, new scopes open to CFD. Aerodynamic simulations on complex FPSO structures are therefore now possible, but need specific developments and validations that are presented in this paper. The main objective of the work presented is to investigate the ability of CFD to evaluate wind loads on complex FPSOs topsides and to provide information on the impact of model simplifications made in wind tunnels. In a first stage, the numerical model was intensively validated by comparing its results to a wind tunnel test case. The numerical model was developed in order to ensure the quality of the results and enable a relevant comparison that was obtained with grids density up to 30 million cells. For this purpose, the geometric model used corresponds to the one used in wind tunnel. The same Atmospheric Boundary Layer was simulated and a thorough effort was performed to ensure the mesh convergence. In a second stage, more physical aspects of the wind tunnel methodology were investigated. Typically the accuracy of the blockage effect correction was evaluated by performing computations with and without blockage, and results were compared with classical corrections applied in wind tunnel. The impacts of the Atmospheric Boundary Layer on wind loads have also been investigated. Finally, the wind load contribution of each component of the FPSO was evaluated.


Author(s):  
Xiaoguang Wang ◽  
Yunbo Hu ◽  
Qi Lin

Cable-driven parallel mechanism is a special kind of parallel robot in which traditional rigid links are replaced by actuated cables. This provides a new suspension method for wind tunnel test, in which an aircraft model is driven by a number of parallel cables to fulfil 6-DOF motion. The workspace of such a cable robot is limited due to the geometrical and unilateral force constraints, the investigation of which is important for applications requiring large flight space. This paper focuses on the workspace analysis and verification of a redundant constraint 6-DOF cable-driven parallel suspension system. Based on the system motion and dynamic equations, the geometrical interference (either intersection between two cables or between a cable and the aircraft) and cable tension restraint conditions are constructed and analyzed. The hyperplane vector projection strategy is used to solve the aircraft’s orientation and position workspace. Moreover, software ADAMS is used to check the workspace, and experiments are done on the prototype, which adopts a camera to monitor the actual motion space. In addition, the system construction is designed by using a built-in six-component balance to measure the aerodynamic force. The results of simulation and tests show a good consistency, which means that the restraint conditions and workspace solution strategy are valid and can be used to provide guidance for the cable-driven parallel suspension system’s application in wind tunnel tests.


Author(s):  
O. Eisele ◽  
G. Pechlivanoglou ◽  
C. N. Nayeri ◽  
C. O. Paschereit

Wind turbine blade design is currently based on the combination of a plurality of airfoil sections along the rotorblade span. The two-dimensional airfoil characteristics are usually measured with wind tunnel experiments or computed by means of numerical simulation codes. The general airfoil input for the calculation of the rotorblade power characteristics as well as the subsequent aerodynamic and aeroelastic loads are based on these two-dimensional airfoil characteristics. In this paper, the effects of inflow turbulence and wind tunnel test measurement deviations are investigated and discussed, to allow considerations of such effects in the rotorblade design process. The results of CFD simulations with various turbulence models are utilized in combination with wind tunnel measurements in order to assess the impact of such discrepancies. It seems that turbulence, airfoil surface roughness and early transition effects are able to contribute significantly to the uncertainty and scattering of measurements. Various wind tunnel facilities generate different performance characteristic curves, while grid-generated turbulence is generally not included in the wind tunnel measurements during airfoil characterization. Furthermore the correlation of grid-generated wind tunnel turbulence with the atmospheric turbulence time and length scales is not easily achieved. All the aforementioned uncertainties can increase the performance scattering of current wind turbine blade designs as well as the generated aeroelastic loads. A brief assessment of the effect of such uncertainties on wind turbine performance is given at the last part of this work by means of BEM simulations on a wind turbine blade.


2013 ◽  
Vol 860-863 ◽  
pp. 1517-1520
Author(s):  
Jing Hua Zhang ◽  
Ren Huang Wang ◽  
Hong Wei Yue

The badminton wind tunnel experiment quality classification was influenced by a lot of factors, such as the size of the wind tunnel wind speed Settings, the selection of the wind hole diameter size, Experiment parameter Settings of the test system software used standard and experimental error and so on. Therefore, a factorys wind tunnel experimental facility would be used by this paper, in order to make the quality of badminton, wind tunnel wind speed and wind hole diameter are researched further. Through the experiment testing, and combined with badminton wind tunnel experiment of theory knowledge, get the impact of these factors on the quality of badminton classification rule. Theoretical analysis is the same as the result of experiment, which this conclusion is indicated by the experiment that what we do. So as to choose the right wind tunnel device and system software of the test parameters Settings provide certain reference. Also the Badminton the judgment of the quality grade classification standard was provided the important reference frame by it.


2012 ◽  
Vol 532-533 ◽  
pp. 352-356
Author(s):  
Hua Bai ◽  
Fang Liang Wang ◽  
Yu Li

In this paper, the distribution of surface wind pressure and wind speed of Hangzhou bay bridge, offshore platform and sightseeing tower is numerically simulated based on Fluent. Two turbulence models, standard k ε model and Realizable k ε model, are used. The influence of the wind pressure distribution of the offshore platform and sightseeing tower by Hangzhou bay bridge is also analyzed. And the detailed comparison between numerical simulation and wind tunnel test is given. Results show that the impact of Hangzhou bay bridge on platform and sightseeing tower occurs mainly with the angle of the wind less than 450. When the angle of the wind is more than 450, the impact is little. The upper of the sightseeing tower does not almost suffer the effect of other buildings. The surface pressure of the platform changes from 5% to 15% between under bridge and under non-bridge condition. The surface pressure of sightseeing tower changes from 0.05% to 3%. The influence on the platform by the bridge is significant but not significant on the sightseeing tower. The simulation results of the tower and mast structure given by both standard k ε model and Realizable k ε model find that the windward side is ideal; the crosswind side is the best; the leeward side is less than ideal. By contrast, the Realizable k ε model is a closer correlation with wind tunnel test than standard k ε model.


2021 ◽  
Vol 66 (1) ◽  
pp. 1-16
Author(s):  
Andŕe Bauknecht ◽  
Xing Wang ◽  
Jan-Arun Faust ◽  
Inderjit Chopra

Rotorcraft flight speed is limited by compressibility effects on the advancing blade side and decreasing lift potential on the retreating blade side. It may thus be beneficial to employ a hingeless rotor to generate additional lift with the advancing blade and compensate the resulting rolling moment with a fixed wing on the retreating blade side. This concept is a form of "lift compounding" that appears to show enormous potential. The present paper presents results of a wind tunnel test with a slowed, hingeless rotor and single fixed wing on the retreating blade side. Based on rotor test stand data and flow field measurements, the impact of operational and rotor parameters on system performance and aerodynamics is examined, mutual interaction effects between rotor and fixed wing are analyzed, and dominant flow structures are characterized in the reverse flow region on the retreating blade side. Flow field analysis reveals a reverse flow entrance vortex that freely convects through the reverse flow region and rivals the blade tip vortices in strength. Contrary to previous beliefs, this vortex originates from upstream of the reverse flow region and only its detachment from the rotor blade is related to entering this region. The combination of finite rolling moment trim and aft shaft tilt significantly increases rotor lift coefficient and corresponding peak lift-to-drag ratio of the compound rotorcraft. Results are compared with predictions from a comprehensive rotor analysis that is expanded to cover the main effects of the added fixed wing and is able to reproduce general performance trends of the rotorcraft. The present study highlights that adding a single fixed wing and hingeless rotor to a high-speed rotorcraft could significantly improve its performance.


Author(s):  
Pablo Bellocq ◽  
Inaki Garmendia ◽  
Vishal Sethi ◽  
Alexis Patin ◽  
Stefano Capodanno ◽  
...  

Due to their high propulsive efficiency, counter-rotating open rotors (CRORs) have the potential to significantly reduce fuel consumption and emissions relative to conventional high bypass ratio turbofans. However, this novel engine architecture presents many design and operational challenges both at engine and aircraft level. The assessment of the impact of the main low-pressure preliminary design and control parameters of CRORs on mission fuel burn, certification noise, and emissions is necessary at preliminary design stages in order to identify optimum design regions. These assessments may also aid the development process when compromises need to be performed as a consequence of design, operational, or regulatory constraints. The required preliminary design simulation tools should ideally be 0D or 1D (for computational purposes) and should capture the impact of the independent variation of the main low-pressure system design and control variables, such as the number of blades, diameter and rotational speed of each propeller, the spacing between the propellers, and the torque ratio (TR) of the gearbox or the counter-rotating turbine (CRT), among others. From a performance point of view, counter-rotating propellers (CRPs) have historically been modeled as single propellers. Such a performance model does not provide the required flexibility for a detailed design and control study. Part I of this two-part publication presents a novel 0D performance model for CRPs allowing an independent definition of the design and operation of each of the propellers. It is based on the classical low-speed performance model for individual propellers, the interactions between them, and a compressibility correction which is applied to both propellers. The proposed model was verified with publicly available wind tunnel test data from NASA and was judged to be suitable for preliminary design studies of geared and direct drive open rotors. The model has to be further verified with high-speed wind tunnel test data of highly loaded propellers, which was not found in the public domain. In Part II, the novel CRP model is used to produce a performance model of a geared open rotor (GOR) engine with a 10% clipped propeller designed for a 160 PAX and 5700 NM aircraft. This engine model is first used to study the impact of the control of the propellers on the engine specific fuel consumption (SFC). Subsequently, it was integrated in a multidisciplinary simulation platform to study the impact of the control of the propellers on engine weight, certification noise, and NOx emission.


2013 ◽  
Vol 655-657 ◽  
pp. 425-429
Author(s):  
Lan Lei Zhao ◽  
Wen Jia Chen ◽  
Li Jun Shi ◽  
Lu Yang Li ◽  
Yan Zhong He

The rigid-flexible hybrid modeling of the wind tunnel test platform is established by means of ANSYS and ADAMS for more accurate analysis of the motion performance of the test platform in this paper. We get the kinematical characteristic curve based on the three working conditions of the pitching motion, yawing motion, rolling motion of the test platform. According to the characteristic curve indirectly reflects the rationality of the design configuration. So as to provide fundamental basis for the precision dynamics simulation analysis and make the real physical prototype are offered.


2014 ◽  
Vol 39 (4) ◽  
pp. 333-334
Author(s):  
Hiroaki NISHIMURA

Sign in / Sign up

Export Citation Format

Share Document