Structural Behavior of Reinforced Rubbercrete Beams in Shear

2015 ◽  
Vol 752-753 ◽  
pp. 513-517 ◽  
Author(s):  
Bashar S. Mohammed ◽  
Raymond Cheng Hsien Loong

Rubbercrete is a concrete containing crumb rubber as partial replacement to fine aggregate. Advantages of rubbercrete have been reported by many researchers. In contrast to normal concrete, rubbercrete is a more ductile which can be used in areas prone to earthquake. In this paper seven reinforced rubbercrete beams without shear reinforcement are fabricated and tested up to failure. Three parameters are considered: beam width, effective depth and a/d. The experimental results are then compared with available shear quations. Available shear quations have produced conservative shear stress prediction for the reinforced rubbercrete beams.

2020 ◽  
Vol 184 ◽  
pp. 01098
Author(s):  
P.Santhi Raj ◽  
G.V.V. Satyanarayana ◽  
M. Sriharshavarma

Concrete has a key role in construction. Study focus on workability of the concrete, Fine Aggregate is partially filled with crumb rubber and M sand, a part of cement is replaced with fly ash. In this investigation the crumb rubber is utilised in place of fine aggregate. The scrap tyre treatment is currently a serious issue against environmental pollution. India stud in forth position in the entire world for rubber tyre market world after china, Europe and the US. Fly ash and M sand is an industrial waste which is included in the concrete. In this investigation workability of concrete is conducted on M20 grade concrete by replacing river side sand with the M sand and crumb rubber at percentage of replacements 0 to 20% at an regular interval of 5%and Compare the results obtained by the modified concrete with the normal concrete.


2021 ◽  
Vol 6 (2) ◽  
pp. 96-103
Author(s):  
Ranno Marlany Rachman ◽  
Try Sugiyarto Soeparyanto ◽  
Edward Ngii

This research aimed to utilize Anadara Granosa (Blood clam shell) clamshell waste as a new innovation in concrete technology and to investigate the effect of Anadara Granosa clamshell powder utilization as an aggregate substitution on the concrete compressive strength. The sample size was made of cylinders with a size of 10 cm x 20 cm with variations of clamshell powder 10%, 20% and 30% from the fine aggregate volume then soaked for 28 days as per the method of the Indonesian National Standard. The evaluation results exhibited that the slump value exceeded the slump value of normal concrete with a slump value of 0% = 160 mm, 10% = 165 mm, 20% = 180 mm and 30% = 180 mm. Additionally, it was found that the concrete compressive strength obtained post 28 days were 20.78 Mpa, 21.95 Mpa, 21.17 Mpa and 24.28 Mpa for normal concrete (0%), substitution concrete (10%), substitution concrete (20%) and substitution concrete (30%), respectively. Leading on from these results, it was concluded that the increment of Anadara Granosa clamshell powder substitution led to the increase of concrete compressive strength test.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012008
Author(s):  
K Supar ◽  
F A A Rani ◽  
N L Mazlan ◽  
M K Musa

Abstract The use of waste material as a partial replacement has become popular in concrete mixture studies. Many research has utilized waste materials like cement, fine aggregate, coarse aggregate, and reinforcing materials substitute. The current paper focuses on some of the waste elements that are utilized in a concrete mortar (use in roof tile) as a partial replacement for fine aggregates such as rubber ash, sawdust, seashells, crumb rubber, pistachio shells, cinder sand, stone dust, and copper slag. There are many variations of mix proportion and water-cement ratio for every waste material. Compressive strength was compared and found that stone dust and the combination of seashell and coconut fiber shows an incensement when used to replacing fine aggregate. The suitable replacement level for stone dust is 25% and 50%. While the suitable replacement levels for the combination of sea shell and coconut fiber are 20% and 30%. Material from the rubber families such as rubber crumb and rubber ash is only suitable for replacement levels. Rubber families especially rubber crumbs have shown low water absorption value which is good in the production of roofing products. As we know, the roof should have waterproof properties to prevent any leaks from happening when it rains. Most of the waste materials added as fine aggregates in concrete have increased the amount of water absorption and found that sawdust is the most abundant material with a high percentage of water absorption compared to the others. Research on the partial replacement of fine aggregates replaced with waste materials is needed more extensively to provide more confidence about their use in concrete mortars, especially on roof tiles.


2015 ◽  
Vol 802 ◽  
pp. 124-129
Author(s):  
Mukaddas Ahmad Musa ◽  
Farah Nora Aznieta Abdul Aziz ◽  
Noor Azline Mohd Nasir

In Malaysia, more than 50,000 tons of used automobile tyres are stockpiled annually. This subsequently causes a major threat to the environment. This article focus on the durability of mortar with treated crumb rubber (TCR) as partial replacement for fine aggregate (FA) and addition of oil palm fruit fibre (OPFF) in the mix. For every 0.5% OPFF additions, there were 10% TCR replacements up to 30%, resulting in 16 different mixes with constant water cement ratio. The specimens were cured either by water ponding or water sprinkling for 28 days, after which they were preconditioned and subsequent carbonation depth measurement was made. The results showed that the carbonation depth lies between 2.5mm to 6.7mm. These confirmed that rubberised fibre mortar achieved carbonation depth of less than 15mm, the tolerable limit.


2018 ◽  
Vol 199 ◽  
pp. 11002
Author(s):  
Kudzai Mushunje ◽  
Mike Otieno ◽  
Yunus Ballim

This paper presents results of a study into the effects of truck tyre crumb rubber particle size, as fine aggregate, on the compressive strength, shrinkage and creep behaviour of structural rubberised concrete. The study is motivated by a growing interest in the use of concrete with waste tyre rubber particles, rubberised concrete, for structural applications. Three tyre crumb rubber sizes (2.36, 1.18 and 0.425 mm) were used to replace 10% by volume of fine mineral aggregates to produce concrete with a target strength of 30 MPa. The concrete was cast water-cured for 28 days and tested for shrinkage and creep for 180 days. Half of the shrinkage and creep samples were sealed with a bitumen seal to prevent drying during testing. Results show a general a decrease in compressive strength with reduction in crumb rubber size. The strength decreases by 22%, 23% and 27% for the 2.36, 1.18 and 0.425 mm mix respectively. Preliminary results show a general increase in both shrinkage and creep deformations in both drying and sealed conditions. The observed increases were checked against the limits provided in design codes to assess the applicability of the material for structural purposes.


2017 ◽  
Vol 79 (6) ◽  
Author(s):  
Musa Adamu ◽  
Bashar S. Mohammed ◽  
Nasir Shafiq

The rate of waste tire generation globally continues to escalate due to increase in vehicle usage. Scrap tires continue to pose serious environmental, health and aesthetic problems. Due limitation in the recycling of scrap tires, one of the most viable solution is to used crumb rubber from scrap tire as partial replacement to fine aggregate in concrete industry. This is rationalized as the production of concrete hit more than 3.8 billion cubic meters annually, therefore, it could provide a solution on conservation of natural aggregate and as well as improve properties of concrete. However, the major setback in the use of crumb rubber in concrete is loss in strength.  In this paper, crumb rubber was used to partially replaced fine aggregate at 0%, 10%, 20% and 30% by volume in roller compacted concrete for pavement applications to produce roller compacted rubbercrete (RCR) to improve its flexural strength and ductility. Several trials were done to achieve the combined grading as recommended by ACI 211.3R, and finally a combination of 55% fine aggregate, 40% coarse aggregate and 5% fine sand as mineral filler was used. In order to mitigate the effect of strength loss, silica fume and fly ash were used to replace natural fine sand as mineral fillers. The Results showed that fresh density, compressive, splitting and flexural strengths decreases with increase in partial replacement of fine aggregate with crumb rubber. However using silica fume as a mineral filler was successful in mitigating loss in compressive, tensile and flexural strengths for up to 20% crumb rubber replacement level, while fly ash as a mineral filler mitigated loss in strength for up to 10% crumb rubber compared natural fine sand mineral filler. The flexural strength was found to increase with 10% crumb rubber for all type of mineral filler


2017 ◽  
Vol 9 (2) ◽  
pp. 79-92 ◽  
Author(s):  
Ahmed Tareq NOAMAN ◽  
Badorul Hisham ABU BAKAR ◽  
Hazizan MD. AKIL

Researchers investigated the utilization of crumb rubber aggregate recycled from waste tire in concrete to solve the problem of discarded tire and to produce a green sustainable concrete. However, a reduction in the mechanical properties due to crumb rubber inclusion occurs. Steel fiber rubberized concrete used in this study to provide a balance between the strength loss and sustainable issue. An investigation on the mechanical properties of rubberized concrete combined with hooked – end steel fiber is presented. Rubberized concrete with different replacement ratios of crumb rubber was incorporated in plain and steel fiber concrete mixes via partial replacement of fine aggregate. Four replacement ratios (17.5%, 20%, 22.5%, and 25%) were used to investigate the effect of the partial replacement of fine aggregate by crumb rubber on the mechanical properties of plain and steel fiber concrete. In both mixes, reduction in mechanical properties was observed to be proportionate with the increment of crumb rubber. Finally, a successful combination of steel fiber and crumb rubber was obtained due to improvement of strain capacity under flexural loading.


River sand is the standard form of fine aggregate used in the concrete production. In this present era of rapid urbanization, to meet the increasing demand of natural sand by the construction industry, massive scale depletion of the river bed is being carried out which is causing a considerable negative impact on our environment. Hence it is highly imperative to find sustainable fine aggregates to meet the global demand without disturbing our ecosystem. Copper slag is one such sustainable material which has a promising future to be used as an alternative to river sand. This paper presents a study on finding the optimum dosage of copper slag (CS) as partial replacement sand in preparation of concrete. Further, as part of durability study, the impact of elevated temperature of 2000 C, 4000 C and 6000 C for 4 hours exposure period on strength characteristics of copper slag blended concrete has been presented and been compared with that of normal concrete. The results indicate that copper slag concrete has excellent resistance to weight and strength loss at an elevated temperature of 2000 C, 4000 C compared to normal concrete however at 6000 C copper slag concrete shows similar trends like normal concrete. In the present experimental study, M20 & M30 concrete grades were used.


Sign in / Sign up

Export Citation Format

Share Document