scholarly journals Investigation on Workability Of M20 Grade Concrete With Partial Replacement Of Crumb Rubber And M Sand For Fine Aggregates And Flyash For Cement

2020 ◽  
Vol 184 ◽  
pp. 01098
Author(s):  
P.Santhi Raj ◽  
G.V.V. Satyanarayana ◽  
M. Sriharshavarma

Concrete has a key role in construction. Study focus on workability of the concrete, Fine Aggregate is partially filled with crumb rubber and M sand, a part of cement is replaced with fly ash. In this investigation the crumb rubber is utilised in place of fine aggregate. The scrap tyre treatment is currently a serious issue against environmental pollution. India stud in forth position in the entire world for rubber tyre market world after china, Europe and the US. Fly ash and M sand is an industrial waste which is included in the concrete. In this investigation workability of concrete is conducted on M20 grade concrete by replacing river side sand with the M sand and crumb rubber at percentage of replacements 0 to 20% at an regular interval of 5%and Compare the results obtained by the modified concrete with the normal concrete.

2021 ◽  
Vol 6 (2) ◽  
pp. 96-103
Author(s):  
Ranno Marlany Rachman ◽  
Try Sugiyarto Soeparyanto ◽  
Edward Ngii

This research aimed to utilize Anadara Granosa (Blood clam shell) clamshell waste as a new innovation in concrete technology and to investigate the effect of Anadara Granosa clamshell powder utilization as an aggregate substitution on the concrete compressive strength. The sample size was made of cylinders with a size of 10 cm x 20 cm with variations of clamshell powder 10%, 20% and 30% from the fine aggregate volume then soaked for 28 days as per the method of the Indonesian National Standard. The evaluation results exhibited that the slump value exceeded the slump value of normal concrete with a slump value of 0% = 160 mm, 10% = 165 mm, 20% = 180 mm and 30% = 180 mm. Additionally, it was found that the concrete compressive strength obtained post 28 days were 20.78 Mpa, 21.95 Mpa, 21.17 Mpa and 24.28 Mpa for normal concrete (0%), substitution concrete (10%), substitution concrete (20%) and substitution concrete (30%), respectively. Leading on from these results, it was concluded that the increment of Anadara Granosa clamshell powder substitution led to the increase of concrete compressive strength test.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012008
Author(s):  
K Supar ◽  
F A A Rani ◽  
N L Mazlan ◽  
M K Musa

Abstract The use of waste material as a partial replacement has become popular in concrete mixture studies. Many research has utilized waste materials like cement, fine aggregate, coarse aggregate, and reinforcing materials substitute. The current paper focuses on some of the waste elements that are utilized in a concrete mortar (use in roof tile) as a partial replacement for fine aggregates such as rubber ash, sawdust, seashells, crumb rubber, pistachio shells, cinder sand, stone dust, and copper slag. There are many variations of mix proportion and water-cement ratio for every waste material. Compressive strength was compared and found that stone dust and the combination of seashell and coconut fiber shows an incensement when used to replacing fine aggregate. The suitable replacement level for stone dust is 25% and 50%. While the suitable replacement levels for the combination of sea shell and coconut fiber are 20% and 30%. Material from the rubber families such as rubber crumb and rubber ash is only suitable for replacement levels. Rubber families especially rubber crumbs have shown low water absorption value which is good in the production of roofing products. As we know, the roof should have waterproof properties to prevent any leaks from happening when it rains. Most of the waste materials added as fine aggregates in concrete have increased the amount of water absorption and found that sawdust is the most abundant material with a high percentage of water absorption compared to the others. Research on the partial replacement of fine aggregates replaced with waste materials is needed more extensively to provide more confidence about their use in concrete mortars, especially on roof tiles.


Abstract. To overcome the shortage of natural resources for the production of concrete, many waste materials are used to replace the raw materials of concrete. In this way, bottom ash is one of the major industrial wastes which shall be used as the replacement of materials in concrete production. It shall be used to replace the materials either up to one-third. This review brings out the evaluation of the industrial waste material which can be repeatedly used as a substitution for concrete as fine aggregate. This paper reviewed the use of industrial waste i.e., bottom ash as fine aggregate in the concrete. The parameters discussed were physical, chemical, fresh, and hardened properties of the concrete with partial replacement of bottom ash. By reviewing some of the research papers, concluded that 10-15% replacement of fine aggregates is acceptable for all the properties of concrete. High utilization of natural sources -gives the pathway to produce more industrial wastes which are responsible for the development of new sustainable development.


2017 ◽  
Vol 79 (6) ◽  
Author(s):  
Musa Adamu ◽  
Bashar S. Mohammed ◽  
Nasir Shafiq

The rate of waste tire generation globally continues to escalate due to increase in vehicle usage. Scrap tires continue to pose serious environmental, health and aesthetic problems. Due limitation in the recycling of scrap tires, one of the most viable solution is to used crumb rubber from scrap tire as partial replacement to fine aggregate in concrete industry. This is rationalized as the production of concrete hit more than 3.8 billion cubic meters annually, therefore, it could provide a solution on conservation of natural aggregate and as well as improve properties of concrete. However, the major setback in the use of crumb rubber in concrete is loss in strength.  In this paper, crumb rubber was used to partially replaced fine aggregate at 0%, 10%, 20% and 30% by volume in roller compacted concrete for pavement applications to produce roller compacted rubbercrete (RCR) to improve its flexural strength and ductility. Several trials were done to achieve the combined grading as recommended by ACI 211.3R, and finally a combination of 55% fine aggregate, 40% coarse aggregate and 5% fine sand as mineral filler was used. In order to mitigate the effect of strength loss, silica fume and fly ash were used to replace natural fine sand as mineral fillers. The Results showed that fresh density, compressive, splitting and flexural strengths decreases with increase in partial replacement of fine aggregate with crumb rubber. However using silica fume as a mineral filler was successful in mitigating loss in compressive, tensile and flexural strengths for up to 20% crumb rubber replacement level, while fly ash as a mineral filler mitigated loss in strength for up to 10% crumb rubber compared natural fine sand mineral filler. The flexural strength was found to increase with 10% crumb rubber for all type of mineral filler


2015 ◽  
Vol 752-753 ◽  
pp. 513-517 ◽  
Author(s):  
Bashar S. Mohammed ◽  
Raymond Cheng Hsien Loong

Rubbercrete is a concrete containing crumb rubber as partial replacement to fine aggregate. Advantages of rubbercrete have been reported by many researchers. In contrast to normal concrete, rubbercrete is a more ductile which can be used in areas prone to earthquake. In this paper seven reinforced rubbercrete beams without shear reinforcement are fabricated and tested up to failure. Three parameters are considered: beam width, effective depth and a/d. The experimental results are then compared with available shear quations. Available shear quations have produced conservative shear stress prediction for the reinforced rubbercrete beams.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3322
Author(s):  
Mugineysh Murali ◽  
Bashar S. Mohammed ◽  
Isyaka Abdulkadir ◽  
M. S. Liew ◽  
Wesam Salah Alaloul

Waste tire and fly ash (FA) are two waste materials whose disposal and rapid rate of accumulation are among the pressing sources of concern and threat to the environment. Although much research exists on the use of these materials in cementitious composites, very little literature is available on the effectiveness of combining them in high volumes for concrete production. This work aimed to utilize crumb rubber (CR) from waste tires as a partial replacement of fine aggregate at 15%, 22.25%, and 30% by volume, and high-volume fly ash (HVFA) replacement of cement at 50%, 60%, and 70% (by weight of cementitious materials) to produce high-volume fly ash–crumb rubber concrete (HVFA–CRC). Using the central composite design (CCD) option of the response surface methodology (RSM), 13 mixes were produced with different combinations and levels of the CR and FA (the input factors) on which the responses of interest (compressive, flexural, and tensile strengths) were experimentally investigated. Furthermore, the composite influence of CR and HVFA on the workability of the concrete was assessed using the slump test. The results showed a decline in the mechanical properties with increasing replacement levels of the CR and HVFA. However, up to 22.25% and 60% of CR and HVFA replacements, respectively, produced a structural HVFA–CRC with a compressive strength of more than 20 MPa at 28 days. Response predictive models were developed and validated using ANOVA at a 95% confidence level. The models had high R2 values ranging from 95.26 to 97.74%. Multi-objective optimization was performed and validated with less than 5% error between the predicted and experimental responses.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 488
Author(s):  
Sylvia Kelechi ◽  
Musa Adamu ◽  
Abubakar Mohammed ◽  
Yasser Ibrahim ◽  
Ifeyinwa Obianyo

Waste tire disposal continues to pose a threat to the environment due to its non-biodegradable nature. Therefore, some means of managing waste tires include grinding them to crumb rubber (CR) sizes and using them as a partial replacement to fine aggregate in concrete. However, the use of CR has a series of advantages, but its major disadvantage is strength reduction. This leads to the utilization of calcium carbide waste (CCW) to mitigate the negative effect of CR in self-compacting concrete (SCC). This study investigates the durability properties of SCC containing CR modified using fly ash and CCW. The durability properties considered are water absorption, acid attack, salt resistance, and elevated temperature of the mixes. The experiment was conducted for mixes with no-fly ash content and their replica mixes containing fly ash to replace 40% of the cement. In the mixes, CR was used to partially replace fine aggregate in proportions of 0%, 10%, and 20% by volume, and CCW was used as a partial replacement to cement at 0%, 5%, and 10% by volume. The results indicate that the mixes containing fly ash had higher resistance to acid (H2SO4) and salt (MgSO4), with up to 23% resistance observed when compared to the mix containing no fly ash. In addition, resistance to acid attack decreased with the increase in the replacement of fine aggregate with CR. The same principle applied to the salt attack scenario, although the rate was more rapid with the acid than the salt. The results obtained from heating indicate that the weight loss was reduced slightly with the increase in CCW, and was increased with the increase in CR and temperature. Similarly, the compressive strength was observed to slightly increase at room temperature (27 °C) and the greatest loss in compressive strength was observed between the temperature of 300 and 400 °C. However, highest water absorption, of 2.83%, was observed in the mix containing 20% CR, and 0% CCW, while the lowest water absorption, of 1.68%, was found in the mix with 0% CR, 40% fly ash, and 10% CCW. In conclusion, fly ash is recommended for concrete structures immersed in water, acid, or salt in sulphate- and magnesium-prone areas; conversely, fly ash and CR reduce the resistance of SCC to heat beyond 200 °C.


2019 ◽  
Vol 8 (3) ◽  
pp. 2844-2848

The economy of a developing country depends to a great extent on the construction industry. Developing countries like India are investing heavily in infrastructure development. The excessive exploitation of natural resources for construction threatens the sustainability of aggregates and poses a number of serious problems. At the same time, the disposal of fly ash and stone residues in landfills cause several environmental crises and pollute the environment. This article deals with a study on the structural behavior of the partial replacement of fine natural aggregates by 0 -40% crystal stones in order to obtain the flow properties of fly-ash-based self-compacting concrete (SCC) by using super plasticizers. Many tests have been done to test the feasibility of using crystal stones in M30 grade SCC. On the basis of the results obtained, the optimum percentage of fine aggregates with crystal stone was calculated at 30% and it was concluded that the increasing percentage of crystal stone replacement by fine aggregates did not affect its workability. The structural performance of simply supported RCC beams of size 150 × 200 × 1500 mm made from SCC with crystalline stone was tested


Sign in / Sign up

Export Citation Format

Share Document