Aluminium Metal Matrix Composite – An Insight into Solid State and Liquid State Processes

2015 ◽  
Vol 766-767 ◽  
pp. 234-239 ◽  
Author(s):  
K.R. Padmavathi ◽  
R. Ramakrishnan ◽  
K. Palanikumar

Aluminium metal matrix composites (AMMCs) are being considered as a group of superior material for its lightness, strength, high specific modulus, low coefficient of thermal expansion and good wear resistance properties. Solid state and liquid state processing methods are used to fabricate AMMCs. Achieving a uniform distribution of reinforcement within the matrix is one such challenge, which affects directly on the properties and quality of composite material. Powder metallurgy route, one of the solid state processing methods can be effectively used to get uniform dispersion of reinforcements with aluminium metal matrix. This paper presents the summary of the ball milling and stir casting processes to fabricate the AMMCs and its applications. Major issues like ball milling time, dispersion of reinforcements, grain size, the stirring time and speed are discussed. Also the effect of different reinforcement for AMMCs on the mechanical properties is discussed in detail.

2012 ◽  
Vol 192-193 ◽  
pp. 61-65 ◽  
Author(s):  
Lilian Ivanchev ◽  
Sigqibo Templeton Camagu ◽  
Gonasagren Govender

There are two main technologies for manufacturing of particulate reinforced metal matrix composites (MMC), solid state and liquid state processing. The great challenge of producing cast metal matrix composites is to prevent agglomeration of particulates. This tendency is more pronounced with decreasing the particulate size to fine micro- and nano size. A method for producing MMC was successfully implemented for mixing hybrid, nano and low micron sized, reinforcing particles in an aluminium alloy matrix. The hybrid SiC particles were produced by milling 3µm to 5µm SiC particles to a particle size range between 2.5µm and 150 nm. The hybrid particles were mixed with A356 aluminium alloy under combined magneto-hydrodynamic (MHD) and mechanical stirring. The composite was then transferred to a High Pressure Die Casting (HPDC) machine in the semi-solid state. The micron size particles were found to be predominantly in the intergranular eutectic while the nano-particles were predominantly in the primary α-Al grains. Increased ultimate tensile strength, yield strength and hardness were achieved for the new cast metal matrix hybrid component (MMHC) alloy.


2020 ◽  
Vol 15 (3) ◽  
Author(s):  
Arvind R S ◽  
Prasanna Ram M ◽  
Prashanth T ◽  
Jaimon Dennis Quadros

Cenosphere fly ash is one of the most inexpensive and low-density material which is abundantly available as a solid waste by-product of coal combustion in thermal power plants. Aluminium metal matrix composites with Nickel coated cenospheres as the reinforcement is prepared by stir casting route. The composites are prepared with varying percentages of cenospheres in the percentage of 2-10% by weight of the composite. Immersion corrosion tests are conducted on the composites in three different medium and for three different time durations. It is evident from the test results as well as the microstructure images that the weight loss of samples with 8% Nickel coated cenospheres has shown least corrosion or the highest corrosion resistance when compared to the counterparts.


2020 ◽  
Vol 7 (1) ◽  
pp. 26-36
Author(s):  
Murlidhar Patel ◽  
Sushanta Kumar Sahu ◽  
Mukesh Kumar Singh

In this present research particulate reinforced aluminium metal matrix composites are developed by using sand mould and liquid stir casting processing route in which AA5052 reinforced with 5 wt. % SiC particulates of 63µm particle size. The density, porosity, micro-hardness, and compressive strength of SiC particulate reinforced AA5052 MMC were investigated and compared these properties with similar properties of unreinforced AA5052. The microstructure of the developed composite was also analysed by using optical microscopy, SEM, and XRD. Developed particulate reinforced Al metal matrix composite gives improved hardness and compressive strength as compared to the unreinforced AA5052. The addition of 5 wt. % SiC particulates increases the density of AA5052.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 429
Author(s):  
Awwal Hussain Nuhu ◽  
Suzi Salwah Binti Jikan ◽  
Saliza Binti Asman ◽  
Nur Azam Bin Badarulzaman ◽  
Dagaci Muhammad Zago

Aluminium metal matrix composites were fabricated from recycled materials via stir casting method. The composites differed in their holding time (ht) that is 30 minutes, 45 minutes and 60 minutes accordingly. The microstructures of the composites were analysed using optical microscope as well as scanning electron microscope in order to examine their morphological make-up. The average densities of the composites were determined and compared with one another. There is no significant difference between average densities of the fabricated composites. The observations revealed that varying the ht has greater impact the composites’ morphology, particularly on those composites which have been fabricated at 60 minutes ht.


2021 ◽  
Vol 23 (10) ◽  
pp. 44-60
Author(s):  
M. Thayumanavan ◽  
◽  
K. RVijayaKumar ◽  

Among the various types of manufacturing process methods for discontinuous metal matrix composite, stir casting is the best suitable manufacturing process to fabricate particulate reinforced metal matrix composite. Its benefit is its simplicity, durability, and adaptability. The main issue in this process is proper wetting of reinforcement in aluminium matrix material. Only proper wetting results in a homogeneous dispersion of reinforcement material, and these homogeneous dispersions help to improve the properties of metal matrix composite material. The purpose of this paper was to discuss the outline of the stir casting process, process parameters, and the contribution effect of process parameters. This paper also presents about of the conditions should follow during the addition of reinforcement material and matrix material pouring in mould cavity. This paper also discusses the conditions that must be met during the addition of reinforcement material and matrix material pouring in the mould cavity. This paper also looked into the impact and contribution of stirring casting time, speed, and temperature in aluminium metal matrix composites, as well as processing issues in aluminium metal matrix composites, challenges, and research opportunities.


Aluminium Metal Matrix composition were used in application of the aerospace and automobiles because of its strength and stiffness. Although tribological characteristics of the materials like wear resistance is low. Many research has been carried out in the particle reinforcement with the Aluminium Metal Matrix. In this paper, the several reinforced particles with the aluminium matrix were reviewed. The reinforced materials like Tungsten carbide, graphite or hybrid reinforced materials were analyzed. The stir casting process is the common technique to fabricate these materials. The reinforcement of graphite particles in aluminium materials were shows the considerable mechanical properties.


2021 ◽  
Vol 309 ◽  
pp. 01227
Author(s):  
Abhishek Thakur ◽  
Ravinder Singh Joshi ◽  
Arshpreet Singh

Aluminium metal matrix composites are pretty much important in the different demanding sectors such as in the field of medicine and engineering like automobiles, aerospace, defence, dental and consumer goods. The need arises due to its huge calibre in industrial need of good materials with lighter weight, excellent properties and economical in cost demanded the researchers or scientists research on composite materials. The AMMCs or Al-MMCs consists of an apex variety of mechanical properties which is directly proportional to the chemical composition of the Aluminium matrix. To enhance strength the reinforcement plays a key role in AMMCs could be in the form of continuous/ discontinuous fibres, whiskers & particulate as the second phase depending on their applications and property requirements. In addition to it, various strength enhancers are reinforcements such as fly ash, TiC, SiC, Al2O3, TiO2, B4C etc. This paper attempts to review the different combinations in the processing of aluminium metal matrix composites along with their properties and their applications.


Sign in / Sign up

Export Citation Format

Share Document