Application of the Continuous Rotating Detonation to Gas Turbine

2015 ◽  
Vol 782 ◽  
pp. 3-12 ◽  
Author(s):  
Piotr Wolański

In this paper experimental research on rotating detonation carried out at the Institute of Aviation (IA) in Warsaw are presented. Research was focused on 3-D numerical simulations of detonation propagation in cylindrical chambers and on evaluation of conditions at which rotating detonation is propagating in cylindrical channels for kerosene-hydrogen-air mixtures. Conducted simulations are used for analysis of complex flow – detonation front interaction and for estimating the thermodynamic parameters of the outflow gases. Extensive research on continuously propagating rotating detonation in many different chambers and in different fuel-air mixtures were tested. On bases of conducted calculations, as well as results of experimental study, a few chamber were selected for tests with GTD-350 engine. It was shown that application of the continuously rotating detonation to GTD-350 engine can results with increased efficiency of the engine.

2018 ◽  
Vol 157 ◽  
pp. 03001 ◽  
Author(s):  
Piotr Bartkowski ◽  
Robert Zalewski

In this paper a new air-bag prototype suitable for protecting valuable objects mounted on the drone is presented. The paper provides a complimentary study involving both numerical simulations and experimental study. The experimental research results are presented for typical air-bag's textile material and were used as a base for the material model calibration process. This model was used for the numerical simulations of the proposed air-bag prototype, which were carried out in the LS-Dyna environment. Based on the outcome of the study, the proposed prototype seems to be a suitable device for preventing the unmanned vehicle equipment from unexpected accidents.


Author(s):  
Ivelin Kostov

In the work brought some experimental data of kinematic parameters of movement of cars forced idle, as the software product was used to diagnose 900 ATS, which recorded kinematic parameters of vehicle. On the basis of the conducted experimental research results are shown tabulated and analysed.


Author(s):  
Joseph Rabovitser ◽  
Stan Wohadlo ◽  
John M. Pratapas ◽  
Serguei Nester ◽  
Mehmet Tartan ◽  
...  

Paper presents the results from development and successful testing of a 200 kW POGT prototype. There are two major design features that distinguish POGT from a conventional gas turbine: a POGT utilizes a partial oxidation reactor (POR) in place of a conventional combustor which leads to a much smaller compressor requirement versus comparably rated conventional gas turbine. From a thermodynamic perspective, the working fluid provided by the POR has higher specific heat than lean combustion products enabling the POGT expander to extract more energy per unit mass of fluid. The POGT exhaust is actually a secondary fuel gas that can be combusted in different bottoming cycles or used as synthesis gas for hydrogen or other chemicals production. Conversion steps for modifying a 200 kW radial turbine to POGT duty are described including: utilization of the existing (unmodified) expander; replacement of the combustor with a POR unit; introduction of steam for cooling of the internal turbine structure; and installation of a bypass air port for bleeding excess air from the compressor discharge because of 45% reduction in combustion air requirements. The engine controls that were re-configured for start-up and operation are reviewed including automation of POGT start-up and loading during light-off at lean condition, transition from lean to rich combustion during acceleration, speed control and stabilization under rich operation. Changes were implemented in microprocessor-based controllers. The fully-integrated POGT unit was installed and operated in a dedicated test cell at GTI equipped with extensive process instrumentation and data acquisition systems. Results from a parametric experimental study of POGT operation for co-production of power and H2-enriched synthesis gas are provided.


Author(s):  
Veeraraghava R Hasti ◽  
Prithwish Kundu ◽  
Sibendu Som ◽  
Jay P Gore

The turbulent flow field in a practical gas turbine combustor is very complex because of the interactions between various flows resulting from components like multiple types of swirlers, dilution holes, and liner effusion cooling holes. Numerical simulations of flows in such complex combustor configurations are challenging. The challenges result from (a) the complexities of the interfaces between multiple three-dimensional shear layers, (b) the need for proper treatment of a large number of tiny effusion holes with multiple angles, and (c) the requirements for fast turnaround times in support of engineering design optimization. Both the Reynolds averaged Navier–Stokes simulation (RANS) and the large eddy simulation (LES) for the practical combustor geometry are considered. An autonomous meshing using the cut-cell Cartesian method and adaptive mesh refinement (AMR) is demonstrated for the first time to simulate the flow in a practical combustor geometry. The numerical studies include a set of computations of flows under a prescribed pressure drop across the passage of interest and another set of computations with all passages open with a specified total flow rate at the plenum inlet and the pressure at the exit. For both sets, the results of the RANS and the LES flow computations agree with each other and with the corresponding measurements. The results from the high-resolution LES simulations are utilized to gain fundamental insights into the complex turbulent flow field by examining the profiles of the velocity, the vorticity, and the turbulent kinetic energy. The dynamics of the turbulent structures are well captured in the results of the LES simulations.


2021 ◽  
pp. 63-67
Author(s):  
I.I. Khusnitdinov ◽  

Purpose. Еxperimental substantiation of the effectiveness of biocompatible biodegradable hydrogels based on hyaluronic acid and chitosan succinate as a carrier of ranibizumab in antiglaucoma operations. Material and methods. Hydrogel drainage (HD) was obtained immediately before surgery. A solution of ranibizumab (0.23 ml) was mixed with a solution of hyaluronic acid dialdehyde (0.5 ml), then a solution of chitosan succinate (0.5 ml) was added. Experimental studies were performed in 12 (12 eyes) healthy rabbits. The first group consisted of 6 eyes – 0.187 ml of ranibizumab per 1 ml of gel. In the control group, HD was used intraoperatively without the addition of ranibizumab (6 eyes). Morphological studies were performed on 7th, 21st, and 42nd days. Results. In experimental studies in vitro and in vivo, it was proved that ranibizumab, administered as a part of 0.1 ml of hydrogel drainage in the antiglaucoma surgery area is released within 3 weeks and suppresses vascularization, scarring of the operating area, and preserves the intrascleral cavity. The optimal concentration of ranibizumab was selected-0.02 ml in 0.1 ml of gel. Conclusion. The safety and effectiveness of the use of hydrogel drainage with ranibizumab based on hyaluronic acid dialdehyde and chitosan succinate in anti-glaucoma operations has been proven. Key words: experimental research, hydrogel drainage, ranibizumab, glaucoma surgery.


Author(s):  
Gennadii Liubchik ◽  
◽  
Nataliia Fialko ◽  
Aboubakr Regragui ◽  
Nataliia Meranova ◽  
...  

The basic positions of the enthalpy-entropy methodology of thermodynamic modeling of processes in gas turbine units (GTUs) and combined power plants on basis GTUs are presented. The main requirements and conditions of this methodology are formulated, they allows the construction of a sequential (without iterations) algorithm for the computational diagnostics of the thermodynamic parameters of the GTU cycle, which includes the calculation blocks for the compressor, combustion chamber, turbine, and exhaust tube of the GTU. The obtained regression equations are presented. The use of these equations simplifies of the procedure for evaluating the thermodynamic parameters of the components at the nodal points of the cycle. The advantages of the proposed methodology in comparison with the traditional thermal-entropy methodology are indicated.


Author(s):  
R. S. Amano ◽  
Krishna Guntur ◽  
Jose Martinez Lucci

It has been a common practice to use cooling passages in gas turbine blade in order to keep the blade temperatures within the operating range. Insufficiently cooled blades are subject to oxidation, to cause creep rupture, and even to cause melting of the material. To design better cooling passages, better understanding of the flow patterns within the complicated flow channels is essential. The interactions between secondary flows and separation lead to very complex flow patterns. To accurately simulate these flows and heat transfer, both refined turbulence models and higher-order numerical schemes are indispensable for turbine designers to improve the cooling performance. Power output and the efficiency of turbine are completely related to gas firing temperature from chamber. The increment of gas firing temperature is limited by the blade material properties. Advancements in the cooling technology resulted in high firing temperatures with acceptable material temperatures. To better design the cooling channels and to improve the heat transfer, many researchers are studying the flow patterns inside the cooling channels both experimentally and computationally. In this paper, the authors present the performance of three turbulence models using TEACH software code in comparison with the experimental values. To test the performance, a square duct with rectangular ribs oriented at 90° and 45° degree and placed at regular intervals. The channel also has bleed holes. The normalized Nusselt number obtained from simulation are validated with that of experiment. The Reynolds number is set at 10,000 for both the simulation and experiment. The interactions between secondary flows and separation lead to very complex flow patterns. To accurately simulate these flows and heat transfer, both refined turbulence models and higher-order numerical schemes are indispensable for turbine designers to improve the cooling performance. The three-dimensional turbulent flows and heat transfer are numerically studied by using several different turbulence models, such as non-linear low-Reynolds number k-omega and Reynolds Stress (RSM) models. In k-omega model the cubic terms are included to represent the effects of extra strain-rates such as streamline curvature and three-dimensionality on both turbulence normal and shear stresses. The finite volume difference method incorporated with the higher-order bounded interpolation scheme has been employed in the present study. The outcome of this study will help determine the best suitable turbulence model for future studies.


Author(s):  
Arnab Roy ◽  
Donald Ferguson ◽  
Todd Sidwell ◽  
Peter Strakey

Operational characteristics of an air breathing Rotating Detonation Combustor (RDC) fueled by natural gas-hydrogen blends are discussed in this paper. Experiments were performed on a 152 mm diameter uncooled RDC with a combustor to inlet area ratio of 0.2 at elevated inlet temperature and combustor pressure while varying the fuel split between natural gas and hydrogen over a range of equivalence ratios. Experimental data from short-duration (∼6sec) tests are presented with an emphasis on identifying detonability limits and exploring detonation stability with the addition of natural gas. Although the nominal combustor used in this experiment was not specifically designed for natural gas-air mixtures, significant advances in understanding conditions necessary for sustaining a stable, continuous detonation wave in a natural gas-hydrogen blended fuel were achieved. Data from the experimental study suggests that at elevated combustor pressures (2–3bar), only a small amount of natural gas added to the hydrogen is needed to alter the detonation wave operational mode. Additional observations indicate that an increase in air inlet temperature (up to 204°C) at atmospheric conditions significantly affects RDC performance by increasing deflagration losses through an increase in the number of combustion (detonation/Deflagration) regions present in the combustor. At higher backpressure levels the RDC exhibited the ability to achieve stable detonation with increasing concentrations of natural gas (with natural gas / hydrogen-air blend). However, losses tend to increase at intermediate air preheat levels (∼120°C). It was observed that combustor pressure had a first order influence on RDC stability in the presence of natural gas. Combining the results from this limited experimental study with our theoretical understanding of detonation wave fundamentals provides a pathway for developing an advanced combustor capable of replacing conventional constant pressure combustors typical of most power generation processes with one that produces a pressure gain.


Sign in / Sign up

Export Citation Format

Share Document