Abrasive Assisted Electrochemical Machining of Al-B4C Nanocomposite

2015 ◽  
Vol 787 ◽  
pp. 523-527 ◽  
Author(s):  
K. Rajkumar ◽  
L. Poovazhgan ◽  
P. Saravanamuthukumar ◽  
S. Javed Syed Ibrahim ◽  
S. Santosh

Aluminium reinforced with SiC, Al2O3 and B4C etc. possesses an attractive combination of properties such as high wear resistance, high strength to weight ratio and high specific stiffness. Among the various reinforced materials used for aluminium, B4C has outperformed all others in terms of hardening effect. Particle size reduction of B4C is found to have positive impact on the material hardness. In the view of physical properties, B4C has less density than that of SiC and Al2O3, which makes it an attractive reinforcement for aluminium and its alloys for light weight applications. In this work, Al nano B4C composite prepared by ultrasonic cavitation method was machined by Abrasive assisted electrochemical machining using cylindrical copper tool electrodes with SiC abrasive medium. In this paper, attempts have been made to model and optimize process parameters in Abrasive assisted Electro-Chemical Machining of Aluminium-Boron carbide nano composite. Optimization of process parameters is based on the statistical techniques using Response Surface Methodology with four independent input parameters such as voltage, current, abrasive concentration and feed rate were used to assess the process performance in terms of material removal rate and surface finish. The obtained results were compared with abrasive assisted electro chemical machining of Aluminium-Boron carbide micro composite and the effect of particle size on the process parameters was analyzed.

2016 ◽  
Vol 852 ◽  
pp. 136-141 ◽  
Author(s):  
M. Sankar ◽  
A. Gnanavelbabu ◽  
K. Rajkumar ◽  
M. Mariyappan

Non-traditional machining process had made possible the machining of hard to cut materials. Among several non-traditional processes electrochemical machining has been given attention since there occurs no burrs or tool wear. Composites with nano reinforcements had outclassed their counterparts in terms of the properties shown by the nano composites. In the present work aluminium matrix has been reinforced with boron carbide and nano graphite which is added as a solid lubricant to improve tribological properties. The composite is subjected to electrochemical machining with a view of optimizing the process parameters. The process involves introducing abrasive particles while machining which aids in machining. Optimization of process parameters was based on the response surface methodology techniques with four independent input parameters such as voltage, current, electrolytic concentration and feed rate and ECM process performance in terms of material removal rate and overcut.


2021 ◽  
Vol 71 (1) ◽  
pp. 1-18
Author(s):  
Basha Shaik Khadar ◽  
Raju M. V. Jagannadha ◽  
Kolli Murahari

Abstract The paper investigates the influence of boron carbide powder (B4C) mixed in dielectric fluid on EDM of Inconel X-750 alloy. The process parameters selected as discharge current (Ip), pulse on time(Ton), pulse off time(Toff), boron carbide(B4C) powder concentration to examine their performance responses on Material Removal Rate (MRR), Surface Roughness(Ra) and Recast Layer Thickness (RLT).In this study, o examine the process parameters which influence the EDM process during machining of Inconel X-750 alloy using combined techniques of Taguchi and similarity to ideal solutions (TOPSIS).Analysis of variance (ANOVA) was conducted on multi-optimization technique of Taguchi-TOPSIS. ANOVA results identified the best process parameters and their percentages. It developed the mathematical equation on Taguchi-TOPSIS performance characteristics results. The multi optimization results indicated that Ip and Toff are more significant parameters; V, and Ton parameters are less significant. Finally, surface structures were studied at optimized EDM conditions by using scanning electron microscope (SEM).


Lubricants ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 65 ◽  
Author(s):  
Kaur ◽  
Ghadirinejad ◽  
Oskouei

The need for metallic biomaterials will always remain high with their growing demand in joint replacement in the aging population. This creates need for the market and researchers to focus on the development and advancement of the biometals. Desirable characteristics such as excellent biocompatibility, high strength, comparable elastic modulus with bones, good corrosion resistance, and high wear resistance are the significant issues to address for medical implants, particularly load-bearing orthopedic implants. The widespread use of titanium alloys in biomedical implants create a big demand to identify and assess the behavior and performance of these alloys when used in the human body. Being the most commonly used metal alloy in the fabrication of medical implants, mainly because of its good biocompatibility and corrosion resistance together with its high strength to weight ratio, the tribological behavior of these alloys have always been an important subject for study. Titanium alloys with improved wear resistance will of course enhance the longevity of implants in the body. In this paper, tribological performance of titanium alloys (medical grades) is reviewed. Various methods of surface modifications employed for titanium alloys are also discussed in the context of wear behavior.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 117 ◽  
Author(s):  
Chinmay Phutela ◽  
Nesma T. Aboulkhair ◽  
Christopher J. Tuck ◽  
Ian Ashcroft

Ti-6Al-4V is a popular alloy due to its high strength-to-weight ratio and excellent corrosion resistance. Many applications of additively manufactured Ti-6Al-4V using selective laser melting (SLM) have reached technology readiness. However, issues linked with metallurgical differences in parts manufactured by conventional processes and SLM persist. Very few studies have focused on relating the process parameters to the macroscopic and microscopic properties of parts with different size features. Therefore, the aim of this study was to investigate the effect of the size of features on the density, hardness, microstructural evolution, and mechanical properties of Ti-6Al-4V parts fabricated using a fixed set of parameters. It was found that there is an acceptable range of sizes that can be produced using a fixed set of parameters. Beyond a specific window, the relative density decreased. Upon decreasing the size of a cuboid from (5 × 5 × 5 mm) to (1 × 1 × 5 mm), porosity increased from 0.3% to 4.8%. Within a suitable size range, the microstructure was not significantly affected by size; however, a major change was observed outside the acceptable size window. The size of features played a significant role in the variation of mechanical properties. Under tensile loading, decreasing the gauge size, the ultimate and yield strengths deteriorated. This investigation, therefore, presents an understanding of the correlation between the feature size and process parameters in terms of the microscopic and macroscopic properties of Ti-6Al-4V parts manufactured using SLM. This study also highlights the fact that any set of optimized process parameters will only be valid within a specific size window.


2014 ◽  
Vol 591 ◽  
pp. 89-93 ◽  
Author(s):  
M. Sankar ◽  
R. Baskaran ◽  
K. Rajkumar ◽  
A. Gnanavelbabu

In this paper, attempts have been made to model and optimize process parameters in Abrasive assisted Electro-Chemical Machining (AECM) of Aluminium-Boron carbide-Graphite composite using cylindrical copper tool electrodes with SiC abrasive medium. Optimization of process parameters is based on the statistical techniques with four independent input parameters such as voltage, current, reinforcement and feed rate were used to assess the AECM process performance in terms of material removal rate. The obtained results are compared with without abrasive assisted electro chemical machining of Aluminium-Boron carbide-Graphite composite. Abrasive assisted ECM process exhibited higher material removal rate from composite material when compared with without abrasive assisted ECM.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1763
Author(s):  
Nthateng Nkhasi ◽  
Willie du Preez ◽  
Hertzog Bissett

Metal powders suitable for use in powder bed additive manufacturing processes should ideally be spherical, dense, chemically pure and of a specified particle size distribution. Ti6Al4V is commonly used in the aerospace, medical and automotive industries due to its high strength-to-weight ratio and excellent corrosion resistance properties. Interstitial impurities in titanium alloys have an impact upon mechanical properties, particularly oxygen, nitrogen, hydrogen and carbon. The plasma spheroidisation process can be used to spheroidise metal powder consisting of irregularly shaped particles. In this study, the plasma spheroidisation of metal powder was performed on Ti6Al4V powder consisting of irregularly shaped particles. The properties of the powder relevant for powder bed fusion that were determined included the particle size distribution, morphology, particle porosity and chemical composition. Conclusions were drawn regarding the viability of using this process to produce powder suitable for additive manufacturing.


2018 ◽  
Vol 1148 ◽  
pp. 136-141
Author(s):  
K.H. Preethi ◽  
B.S. Ajay Kumar ◽  
N.J. Krishna Prasad ◽  
K. Barat

An extensively studied Al-Mg-Si (AA6061) alloy has been considered for this investigation. This alloy is used for large number of industrial applications since it possesses medium to high strength to weight ratio, excellent weldability and corrosion resistance. It has been observed that these alloys are usually used in sheet form and were welded for large application. Even though a number of welding procedures are available, the most convenient and economical procedure of tungsten inert gas (TIG) welding was used to weld Al-Mg-Si sheets. All the sheets were having a thickness of 3.0 mm. In the case of single pass TIG welded samples, the pulsed current has been found beneficial as it is most advantageous over the conventional continuous current process. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy. This is possibly due to the grain refinement occurring in the fusion zone. These results clearly demonstrated that current parameters and its optimization is most important aspect for obtaining a good weldment. An Influence of process parameters and their influence on mechanical properties are explained in detail in light of microstructural details.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 382
Author(s):  
Xinge Zhang ◽  
Qing Sang ◽  
Zhenan Ren ◽  
Guofa Li

Aluminum and aluminum alloys have the advantage of a high strength-to-weight ratio, but their low hardness and poor wear resistance often cause wear damage. In the present study, the cladding layer was prepared using argon-shielded arc cladding of CuZn40-WC powders which were pre-coated on a pure aluminum substrate. The effects of WC proportion on the morphology, microstructure, and properties of cladding layers were investigated in detail. The results indicated that the optimal WC proportion in CuZn40-WC powders was 60 wt.%. With the increase of WC proportion, although the morphology of the cladding layer became slightly worse, the surface quality of the cladding layer was acceptable for industrial application until the WC proportion was 80 wt.%. Meanwhile, the top width and maximum depth of the cladding layer decreased. The maximum microhardness and optimal wear resistance of the cladding layer were 4.5 and 2.5 times that of the aluminum substrate, respectively. The increased microhardness and wear resistance were mainly attributed to the formation of Al4W in the cladding layer. The wear scar of the high wear resistance specimen was smoother and some bulk Al4W compounds were clearly observed on the wear surface.


2014 ◽  
Vol 592-594 ◽  
pp. 467-472 ◽  
Author(s):  
M. Kalaimathi ◽  
G. Venkatachalam ◽  
Neil Pradeep Makhijani ◽  
Ankit Agrawal ◽  
M. Sivakumar

Monel 400 is a cuprous nickel alloy which is very well-known for its resistivity towards physical and chemical strength. It is probably one of the hardest and most non-corrosive materials known in industrial as well as research field. These properties have enhanced its applications in various fields such as aerospace industries, marine industries, automotive industries etc. Monel 400 alloys are too hard to machine using conventional machine tools and methods as it work hardens rapidly on its surface. Authors concluded that electrochemical machining is the choice of machining of these materials. The present work is carried out to analyze the impact of ECM process parameters such as applied voltage (V), inter-electrode gap (IEG) and electrolyte concentration (EC) on material removal rate (MRR) and surface roughness (Ra). An aqueous sodium nitrate (NaNO3) is used as basic electrolyte in the electrochemical machining of Monel 400 alloys. Response surface methodology (RSM) based central composite design (CCD) is used as experimental strategy. Effects of process parameters as well as their interactions are analysed and the process parameters are optimized.


2018 ◽  
Vol 5 ◽  
pp. 7 ◽  
Author(s):  
Vemula Vijaya Vani ◽  
Sanjay Kumar Chak

Metal Matrix Composites are developed in recent years as an alternative over conventional engineering materials due to their improved properties. Among all, Aluminium Matrix Composites (AMCs) are increasing their demand due to low density, high strength-to-weight ratio, high toughness, corrosion resistance, higher stiffness, improved wear resistance, increased creep resistance, low co-efficient of thermal expansion, improved high temperature properties. Major applications of these materials have been in aerospace, automobile, military. There are different processing techniques for the fabrication of AMCs. Powder metallurgy is a one of the most promising and versatile routes for fabrication of particle reinforced AMCs as compared to other manufacturing methods. This method ensures the good wettability between matrix and reinforcement, homogeneous microstructure of the fabricated MMC, and prevents the formation of any undesirable phases. This article addresses mainly on the effect of process parameters like sintering time, temperature and particle size on the microstructure of aluminum metal matrix composites.


Sign in / Sign up

Export Citation Format

Share Document