Tribological Characteristics of Al6061-TiC Composite Synthesized by In Situ Technique

2015 ◽  
Vol 787 ◽  
pp. 653-657 ◽  
Author(s):  
G.S. Pradeep Kumar ◽  
R. Keshavamurthy ◽  
C.S. Ramesh ◽  
B.H. Channabasappa

Al6061-TiC in-situ composite was developed using hexafluorotitanate salt and graphite powder. Microstructure studies, hardness and dry sliding friction and wear behavior were investigated for both base alloy and in-situ composite. Friction and wear tests were performed at the normal load and sliding speeds in the range 20-100N and 0.314-1.57m/s respectively. For a given TiC content, coefficient of friction was lower than base alloy for all the loads and sliding speeds. A tremendous improvement in the wear resistance of the composite was found when compared with base alloy.

Author(s):  
Mamoun Fellah ◽  
Linda Aissani

The aim of the present research was focused on the study of the effect of replacing vanadium by niobium and iron on the tribological behavior of Hot Isostatic Pressed (HIPed) titanium alloy (Ti-6Al-4V) biomaterial, using a ball-on-disk type Oscillating tribometer, under wet conditions using physiological solution conditions (Ringer solution) in accordance with the ASTMG 99, ISO 7148-1:2012, and ASTM G 133–95 standards. The tests were carried out under a normal load of 6 N, with an AISI 52100 grade steel ball as a counter face. The morphological changes and structural evolution of the nanoparticle powders using different milling times (2, 6, 12 and 18 h) were studied. The morphological characterization indicated that the particle and crystallite size continuously decreases with increasing milling time to reach the lowest value of 4 nm at 18 hours milling. The friction coefficient and wear rate were lower in the samples milled at 18 h (0.226, 0.297 and 0.423) and (0.66 x10-2, 0.87x10-2 and 1.51x10-2 µm3.N-1.µm-1) for Ti-6Al-4Fe, Ti-6Al-4Nb and Ti-6Al-4V, respectively. This improvement in friction and wear resistance is attributed to the grain refinement at 18 hour milling. The Ti-6Al-4Fe samples showed good tribological performance for all milling times


2012 ◽  
Vol 476-478 ◽  
pp. 566-569
Author(s):  
Bao Guo Yuan ◽  
Hai Ping Yu ◽  
Ping Li ◽  
Gui Hua Xu ◽  
Chun Feng Li ◽  
...  

The effects of hydrogen on friction and wear properties of Ti–6Al–4V alloy sliding against GCr15 steel were investigated through dry sliding friction and wear tests in atmosphere at room temperature. Wear mechanism was determined by studying the morphology and chemical element of worn surface using SEM and EDS. Results show that friction coefficient decreases slightly and wear rate increases after hydrogenation. Wear mechanism is discussed.


2015 ◽  
Vol 67 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Akin Akinci

Purpose – The purpose of this paper is to investigate the friction and wear performance of pure polycarbonate (PC) and 5-30 per cent wollastonite-filled (by weight) PC were comparatively evaluated under dry sliding conditions. Wear tests were carried out at room temperature under the loads of 5-20 N and at the sliding speeds of 0.5-1.5 m/s. Design/methodology/approach – The microstructures of the wollastonite, pure PC and composites were examined by optical microscopy, scanning electron microscopy, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis. The friction and wear tests were realized using a pin-on-disk arrangement against the hardened AISI 4140 steel. Findings – The result of this study indicated that the coefficients of friction wear rate of the materials were significantly influenced by an increase in wollastonite content. The friction coefficient of the PC was getting decreased from 0.457 to 0.198 with an increase in wollastonite content, depending on applied loads and sliding speeds. On the other hand, the results showed that the wear rates of pure PC and wollastonite-filled PCs decreased with an increase in loads. The wear rate of the PC decreased from 1.2 × 10−6 to 8.7 × 10−6 mm3/m with an increase in wollastonite content, depending on applied loads. Originality/value – There are many reports which deal with the friction and wear performance of the polymers and polymer composites. However, the effect of wollastonite effect on tribological performance of PC has up to now not been extensively researched.


2011 ◽  
Vol 415-417 ◽  
pp. 293-296 ◽  
Author(s):  
Xiao Han Xiang ◽  
Ding Han Xiang ◽  
Wei Fang ◽  
Jiao Ling Ma

Polyoxymethylene (POM) composites filled with low-density polyethylene (LDPE) and wood fibers were prepared by injection-molding. Friction and wear tests were carried out in a reciprocating sliding tribotester. Results showed that 5wt.%LDPE acted effectively as the internal lubricant for POM. Further addition of the wood fiber increased the wear rate of the POM/LDPE composites but had little effect on the coefficient of coefficient in the presence of LDPE. SEM observations showed that the main wear mechanism for unfilled POM was adhesive wear, while in the case of POM composites abrasion and fatigue seemed to govern the wear process. It was suggested that, the POM/LDPE/Wood fiber composite, which is low-cost and environmentally friendly, has the potential for tribological applications.


Author(s):  
D. W. Kim ◽  
K. W. Kim

In this study, friction and wear tests were performed in order to investigate the effect of sliding velocity and normal load on the friction and wear characteristics of multi-layered diamond-like carbon (DLC) coating used for machine elements (automotive engine tappet, etc). Friction and wear tests against AISI 52100 bearing steel ball were performed under various sliding velocities (0.25, 0.5, 1 and 2 m/s) and normal loads (6.13, 20.7 and 49.0 N). As a result of test, kinetic friction coefficients and wear rates of multi-layered DLC coating and AISI 52100 bearing steel were obtained under each test condition. The result showed that the kinetic friction coefficients and wear rates generally decreased with the increase in sliding velocity and normal load.


2013 ◽  
Vol 770 ◽  
pp. 285-288
Author(s):  
Wei Hua Wei ◽  
Jiu Hua Xu ◽  
Yu Can Fu

Ti-6Al-4V alloy was hydrogenated at 800°C by thermohydrogen treatment technology. Sliding friction and wear tests were carried out in a special tribometer assembled on CA6140 turning lathe to investigate the friction and wear morphology between hydrogenated titanium alloys and WC-Co cemented carbides. The morphological analyses of the worn surface were made by scanning electron microscope. It was found that the friction coefficient and the friction area temperature of the pair both firstly decreased and then increased with the increase of hydrogen content, and the friction coefficient decreased and the friction area temperature increased with increasing sliding speed. The main wear morphologies of the unhydrogenated alloys were serious plastic deformation, ploughing, adhesion tearing pit and fatigue microcrack, but the main wear morphologies of the hydrogenated alloys were boundary of plastic extension, slight scratch and slight adhesion tearing. Besides, the main wear morphology of the tool corresponding to unhydrogenated alloys was massive spalling, but the main wear morphology of the tool corresponding to the titanium alloy with 0.29% hydrogen content was punctate spalling.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 329 ◽  
Author(s):  
Wei Tang ◽  
Chuang Yu ◽  
Shaogang Zhang ◽  
Songyong Liu ◽  
Xingcai Wu ◽  
...  

In this study, the tribological behavior of lamellar ZrS2 nanobelts as lubricant additives was investigated under different concentrations, normal load, velocity, and temperature. The friction and wear tests were performed using a tribometer and with a reciprocating motion. The results indicate that the lamellar ZrS2 nanobelt additives can effectively reduce the coefficient of friction and running-in time during the running-in period. With the addition of ZrS2, the wear volumes decrease significantly. The wear is mostly influenced by the tribological performance throughout the running-in period. The lower the running-in time and coefficient of friction are during the running-in period, the less amount of wear is shown. ZrS2 can significantly increase the load-carrying capacity of oil. The 1.0 wt% concentration of ZrS2 yields the best antifriction effect, antiwear performance, and load-carrying capacity. The ZrS2 additives can increase the working temperature of the oil. The friction-reducing and antiwear mechanisms of lamellar ZrS2 were discussed.


Sign in / Sign up

Export Citation Format

Share Document