A Preliminary Study on the Preparation of Activated Carbon from Cyrtosperma chamissonis Petioles via Single Step H3PO4 Activation

2015 ◽  
Vol 799-800 ◽  
pp. 47-51
Author(s):  
M.S. Mohammed Yahya ◽  
Jeyashelly Andas ◽  
Ghani Zaidi Ab

In this study, highly porous activated carbon was prepared fromCyrtospermachamissonispetioles via single step H3PO4activation. The effect of impregnation temperature (RT – 90 °C) on the yield, porosity and surface area was investigated. The synthesized activated carbons were characterized by Na2S2O3volumetric method, SEM/EDX and N2adsorption-desorption analyses. The optimization investigation clearly showed that the impregnation temperature affected on the yield and the specific surface area of the materials. Under the optimum impregnation temperature of 75 °C, the registered iodine number and BET surface area were 1129.23 mgg-1and 1390.41 m2g-1respectively with yield percentage of 35.82. This preliminary study proves the successful conversion of plant waste into value added porous materials.

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1276 ◽  
Author(s):  
Castro ◽  
Nobre ◽  
Napoli ◽  
Bianchi ◽  
Moulin ◽  
...  

This paper provides proof of concept that activated carbon (AC) may be readily produced using limited conversion methods and resources from sawdust of massaranduba (Manilkara huberi) wood, thereby obtaining value-added products. Sawdust was sieved and heat-treated in an oxygen-free muffle furnace at 500 °C to produce charcoal. The charcoal was activated in a tubular electric furnace at 850 °C while being purged with CO2 gas. Microstructural, thermal and physical properties of the three components: sawdust, charcoal and AC were compared by means of field emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), density and water adsorption/desorption measurements. The resulting AC had a large surface area as measured by Brunauer-Emmett-Teller (BET) comparable to other such values found in the literature. The large surface area was due to pore development at the microstructural level as shown by FESEM. XRD illustrated that sawdust had a semi-crystalline structure whereas charcoal and AC evidenced mostly amorphous structures. TGA and DSC showed that AC had high reactivity to moisture compared to sawdust and charcoal.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
N. Mojoudi ◽  
N. Mirghaffari ◽  
M. Soleimani ◽  
H. Shariatmadari ◽  
C. Belver ◽  
...  

AbstractThe purpose of this study was the preparation, characterization and application of high-performance activated carbons (ACs) derived from oily sludge through chemical activation by KOH. The produced ACs were characterized using iodine number, N2 adsorption-desorption, Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The activated carbon prepared under optimum conditions showed a predominantly microporous structure with a BET surface area of 2263 m2 g−1, a total pore volume of 1.37 cm3 g−1 and a micro pore volume of 1.004 cm3 g−1. The kinetics and equilibrium adsorption data of phenol fitted well to the pseudo second order model (R2 = 0.99) and Freundlich isotherm (R2 = 0.99), respectively. The maximum adsorption capacity based on the Langmuir model (434 mg g−1) with a relatively fast adsorption rate (equilibrium time of 30 min) was achieved under an optimum pH value of 6.0. Thermodynamic parameters were negative and showed that adsorption of phenol onto the activated carbon was feasible, spontaneous and exothermic. Desorption of phenol from the adsorbent using 0.1 M NaOH was about 87.8% in the first adsorption/desorption cycle and did not decrease significantly after three cycles. Overall, the synthesized activated carbon from oily sludge could be a promising adsorbent for the removal of phenol from polluted water.


2016 ◽  
Vol 857 ◽  
pp. 475-479 ◽  
Author(s):  
M.S. Mohammed Yahya ◽  
Jeyashelly Andas ◽  
Ghani Zaidi Ab

In this work, mesoporous activated carbon with high surface area was synthesized from swamp taro stalk by single step ZnCl2 activation. The synthesized activated carbon was characterized by Na2S2O3 volumetric method, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and N2 adsorption-desorption analyses. Under the single step ZnCl2 activation, the registered iodine number, BET surface area, total pore volume and pore diameter were 1087.57 mgg-1, 1242.26 m2g-1, 0.73cm3g-1 and 3.72 nm respectively with yield of 25.34%. SEM analysis evidenced the well-formation of porous structure. Type IV isotherm with H2 loops obtained from N2-sorption studies indicates the ink bottles shape mesoporous network structure. This research proved the successful conversion of plant waste into high grade activated carbon.


2012 ◽  
Vol 66 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Ş. Gül ◽  
O. Eren ◽  
Ş. Kır ◽  
Y. Önal

The objective of this study is to compare the performances of catalytic ozonation processes of two activated carbons prepared from olive stone (ACOS) and apricot stone (ACAS) with commercial ones (granular activated carbon-GAC and powder activated carbon-PAC) in degradation of reactive azo dye (Reactive Red 195). The optimum conditions (solution pH and amount of catalyst) were investigated by using absorbencies at 532, 220 and 280 nm wavelengths. Pore properties of the activated carbon (AC) such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N2 adsorption. The highest BET surface area carbon (1,275 m2/g) was obtained from ACOS with a particle size of 2.29 nm. After 2 min of catalytic ozonation, decolorization performances of ACOS and ACAS (90.4 and 91.3%, respectively) were better than that of GAC and PAC (84.6 and 81.2%, respectively). Experimental results showed that production of porous ACs with high surface area from olive and apricot stones is feasible in Turkey.


2014 ◽  
Vol 699 ◽  
pp. 87-92 ◽  
Author(s):  
Abdul Rahim Yacob ◽  
Adlina Azmi ◽  
Mohd Khairul Asyraf Amat Mustajab

The characteristics and quality of activated carbons prepared depending on the chemical and physical properties of the starting materials and the activation method used. In this study, activated carbon prepared using pineapple waste. Three parts of pineapple waste which comprises of peel, crown and leaf were studied. For comparison activated carbon were prepared by both physical and chemical activation respectively. Three types of chemicals were used, phosphoric acid (H3PO4), sulphuric acid (H2SO4), and potassium hydroxide (KOH). The preparation includes carbonization at 200°C and activation at the 400°C using muffle furnace. The chemical characterization of the activated carbon was carried out using Thermogravimetric analysis (TGA), Nitrogen gas adsorption analysis and Fourier transform infrared (FTIR). The highest BET surface area was achieved when the pineapple peel soaked in 20% phosphoric acid with a surface area of 1115 m2g-1. FTIR analysis indicates that the reacted pineapple waste successfully converted into activated carbons.


2019 ◽  
Vol 2 (3) ◽  
pp. 1205-1209
Author(s):  
Hasan Sayğılı

The influence of carbonization temperature (CT) on pore properties of the prepared activated carbon using lentil processing waste product (LWP) impregnated with potassium carbonate was studied. Activated carbons (ACs) were obtained by impregnation with 3:1 ratio (w/w) K2CO3/LWP under different carbonization temperatures at 600, 700, 800 and 900 oC for 1h. Activation at low temperature represented that micropores were developed first and then mesoporosity developed, enhanced up to 800 oC and then started to decrease due to possible shrinking of pores. The optimum temperature for LWP was found to be around 800 oC on the basis of total pore volume and the Brunauer-Emmett-Teller (BET) surface area. The optimum LWPAC sample was found with a CT of 800 oC, which gives the highest BET surface area and pore volume of 1875 m2/g and 0.995 cm3/g, respectively.


2021 ◽  
Vol 50 (8) ◽  
pp. 2251-2269
Author(s):  
N.A. Ahammad ◽  
M.F.M. Yusop ◽  
A.T. Mohd Din ◽  
M.A. Ahmad

The focal point of this study is to synthesis Alpinia galanga Stem-based activated carbon (AGSAC) by using single-step microwave irradiation and testing it for the removal of cationic dye, methylene blue (MB) from aqueous solution. AGSAC was prepared under the flow of carbon dioxide (CO2) for the gasification effect. The factors of contact time (from 0 to 24 h) and initial concentration (25-300 mg/L) on the adsorption performance of AGSAC were studied. With the aid of response surface methodology (RSM) via face-centered composite design (FCD), optimum preparation conditions for AGSAC were found to be 400 W for radiation power and 4 min for activation time, respectively, which resulted in 95.67% of MB dye removal. The optimized AGSAC has a Bruneaur-Emmet-Teller (BET) surface area of 172.19 m2/g, mesopore surface area of 103.32 m2/g, a total pore volume of 0.1077 cm3/g, and fixed carbon content of 47.63%. The pore diameter of AGSAC was found to be a mesoporous type with a pore diameter of 2.50 nm. Freundlich isotherm and pseudo-second-order were found as the best-fitted model for MB adsorption equilibrium and kinetic respectively onto prepared AGSAC. Intraparticle diffusion was found to be the rate-limiting step.


2014 ◽  
Vol 695 ◽  
pp. 12-15 ◽  
Author(s):  
A.M. Abioye ◽  
Farid Nasir Ani

Biochar was produced from oil palm shell via microwave-induced pyrolysis. The biochar was subsequently activated via microwave assisted CO2 activation. A simple single layer arrangement of the microwave absorber (coconut shell based activated carbon) and oil palm shell in the reactor was adopted during pyrolysis. In recent times, the treatment of oil palm biomass using microwave heating technology has been on the increase. Value added products such as bio-oil, gas, biochar and activated carbon are being produced while at the same time serving as waste management control. Biochar is seen as a promising climate mitigation tool. Activated carbons can be used as absorbent for the removal of pollutants from wastewaters, as air pollution control and as electrode for supercapacitor. This paper presents comparative study between the characteristics of oil palm shell biochar and oil palm shell activated carbon. BET surface area and Scanning Electron Microscopy (SEM) were analyzed to establish the characteristics of the biochar and activated carbon.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
S. G. Herawan ◽  
M. S. Hadi ◽  
Md. R. Ayob ◽  
A. Putra

Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced.


2011 ◽  
Vol 704-705 ◽  
pp. 517-522 ◽  
Author(s):  
Xiao Juan Jin ◽  
Zhi Ming Yu ◽  
Gao Jiang Yan ◽  
Wu Yu

Activated carbons were prepared through chemical activation of lignin from straw pulping precursor using potassium carbonate as the chemical agent. Effects of activated temperature, K2CO3/lignin ratio and the activated time on the yield, Iodine number of activated carbon were investigated. Experimental results indicated that the optimum conditions were as follow: activated temperature 800°C, K3CO3(40% concentration) /lignin ratio 5: l, activated time 50min. These conditions allowed us to obtain a BET surface area of 1104 m2/g, including the external or non-microporous surface of 417 m2/g,Amount of methylene blue adsorption, Iodine number and the yield of activated carbon prepared under optimum conditions were 10.6mL/0.lg,1310 mg/g and 19.75%, respectively.


Sign in / Sign up

Export Citation Format

Share Document