Optimization of Electroless Ni-P-Nano-TiO2 Coating Parameters Using Taguchi Method for Corrosion Performance

2015 ◽  
Vol 813-814 ◽  
pp. 95-100 ◽  
Author(s):  
T.R. Tamilarasan ◽  
R. Sathish Kumar ◽  
R. Rajendran ◽  
G. Rajagopal

This article considers an experimental study of Taguchi’s parameters design to maximize the corrosion resistance of electroless Ni-P-nano-TiO2 on low carbon steel substrate. The experiments were carried out based on Taguchi’s L9 orthogonal array considering four coating parameters of three levels each namely, Bath Temperature, pH of bath, Bath Loading, and concentration of TiO2. Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS) facilitated the study of the surface morphology and the chemical composition of the coatings. Corrosion performance of the deposits was evaluated by Tafel polarization technique in 3.5 wt. % of NaCl solution. The observation shows that pH level has more significant influence on the corrosion behavior of the composite deposit. The experimental study revealed that the optimum conditions are A3B3C2D1 (Temperature of 88° C, pH of 6, bath loading of 0.5 dm2/l, and TiO2 concentration of 2 g/l).

2010 ◽  
Vol 297-301 ◽  
pp. 1042-1047 ◽  
Author(s):  
Pablo Rodriguez-Calvillo ◽  
Lucia Suarez ◽  
Yvan Houbaert

Steels alloyed with Si and Al are used as core material in flux carrying machines, they are commonly called electrical steels, divided into grain oriented and non-oriented when a material without magnetic anisotropy or not is desired and used in transformer and electrical motors, respectively. The appearance of brittle ordered structures when Si+Al content in steel is above 4 m.-% does not always make its industrial production easy. Therefore hot dipping in a Al-Si bath followed by a diffusion annealing was found to be a productive way of steels with high Si and/or Al concentration and to overcome the creation of fragile structures during deformation processes, such as rolling. The formation of different layered Al-(Si)-Fe intermetallics on the steel substrate depends on diverse processing parameters such as bath temperature and composition, immersion time, preheating of the steel substrate and its composition and cooling down to room temperature. This contribution reports the diffusion kinetics of Fe2Al5 products obtained during the hot dipping process in an Al iron saturated and a hypoeutectic Al – 5 m.-% Si baths of ultra low carbon steel and Fe-substrates with 3 m.-% Si, annealed and cold rolled to different thicknesses. The preheating of the samples and bath temperatures were varied between 670 to750°C. Dipping times between 1 to 600 sec. were applied. The different layers and compounds formed were characterized by Scanning Electron Microscopy (SEM), using Back Scattered Electron (BSE) detector and Energy Dispersive Spectroscopy (EDS). The influence of the substrate and bath chemical composition on the growth kinetics of the Fe2Al5 intermetallics was investigated assuming a parabolic law. Si addition retards the growth kinetics and, as result, raises the activation energy from 71.3 to 159.8 kJmol-1, the obtained results are in agreement with the literature.


2011 ◽  
Vol 686 ◽  
pp. 569-573 ◽  
Author(s):  
Ming Feng Tan ◽  
Wan Chang Sun ◽  
Lei Zhang ◽  
Quan Zhou ◽  
Jin Ding

Electroless Ni-P coating containing ZrO2particles was successfully co-deposited on low carbon steel substrate. The surface and cross-sectional micrographs of the composite coatings were observed with scanning electron microscopy (SEM). And the chemical composition of the coating was analyzed with energy dispersive spectroscopy (EDS). The oxidation resistance was evaluated by weight gains during high temperature oxidation test. The results showed that the embedded ZrO2particles with irregular shape uniformly distributed in the entire Ni-P matrix, and the coating showed a good adhesion to the substrate. The weight gain curves of Ni-P-ZrO2composite coatings and Ni-P coating at 923K oxidation experiments were in accordance with . The ZrO2particles in Ni-P matrix could significantly enhance the high temperature oxidation resistance of the carbon steel substrate as compared to pure Ni-P coating.


2013 ◽  
Vol 734-737 ◽  
pp. 2269-2272
Author(s):  
Hong Mei Zhu ◽  
Shu Mei Lei ◽  
Tong Chun Kuang

In this paper, a low carbon steel was used as the substrate to prepare the carbon nanostructural materials by the oxygen-acetylene flame method. The experimental results show that the composite products including nodular carbon nanoparticles and amorphous carbon were obtained on the substrate after a mechanical polishing pretreatment. Comparatively, the short tubular carbon nanofibers with the diameter of around 100 nm were deposited on the substrate pretreated by dipping in the concentrated nitric acid solution. The possible mechanism for the growth of such carbon nanofibers was discussed.


2021 ◽  
Vol 886 ◽  
pp. 168-174
Author(s):  
Mohanad N. Al-Shroofy ◽  
Hanna A. Al-Kaisy ◽  
Rabab Chalaby

Powder spray coating was used for many applications such as paint decoration and protection against corrosive environments. The electrostatic spray method is used to lower the manufacturing cost and the environmental effect during the production process. It is done by electrostatic device and spray gun to create a layer on the substrate to play a protective role. Different dry powders were mixed to form a composite mixture consisted of Al2O3 and SiC or ZrSiO4 with Al powder as a binder. The powders mixture was deposited by electrostatic spray technique with a high voltage of 15 kV on a low carbon steel substrate of (40 x 10 x 4) mm in dimensions. Two groups of mixtures were used to form the coating layers. Powders of Al2O3 with (20 and 40) weight percent (wt%) of SiC as the first group and (20 and 40) wt% of ZrSiO4 as the second group were used. 5 wt% of Al powder was added as a binder, and the samples were heat treated at 900 C° for 2 hours. A detailed characterization of the composite coating layers was performed using XRD, SEM, and EDX, as well as, micro-hardness measurements. The obtained surface composite layers were smooth and having good particle distribution which leads to enhance roughness values (Ra). Furthermore, the hardness increased with increasing the amount of carbide and zirconia, and the obtained layers show no presence of defects or cracks.


2012 ◽  
Vol 57 (2) ◽  
pp. 517 ◽  
Author(s):  
M. Żelechower ◽  
J. Kliś ◽  
E. Augustyn ◽  
J. Grzonka ◽  
D. Stróż ◽  
...  

The Microstructure of AnnealedGalfanCoating on Steel SubstrateThe commercially availableGalfancoating containing 5-7wt.% of Al deposited on the low carbon steel substrate by hot dipping has been examined with respect to the microstructure of the coating/substrate interface area. The application of several experimental techniques (SEM/EDS, XRD, TEM/AEM/EDS/ED) allowed demonstrating the two-phase structure of the alloy coating in non-treated, commercially availableGalfansamples: Zn-rich pre-eutectoidηphase grains are surrounded by lamellar eutectics ofβ-Al andη-Zn. The transition layer between the alloy coating and steel substrate with the considerably higher Al content (SEM/EDS, TEM/EDS) has been found in both non-treated and annealed samples (600°C/5 minutes). Only the monoclinic FeAl3Znxphase however was revealed in the annealed sample (TEM/electron diffraction) remaining uncertain the presence of the orthorhombic Fe2Al5Znxphase, reported by several authors.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 888 ◽  
Author(s):  
Ron ◽  
Levy ◽  
Dolev ◽  
Leon ◽  
Shirizly ◽  
...  

: Current additive manufacturing (AM) processes are mainly focused on powder bed technologies, such as electron beam melting (EBM) and selective laser melting (SLM). However, the main disadvantages of such techniques are related to the high cost of metal powder, the degree of energy consumption, and the sizes of the components, that are limited by the size of the printing cell. The aim of the present study was to evaluate the environmental behavior of low carbon steel (ER70S-6) produced by a relatively inexpensive AM process using wire feed arc welding. The mechanical properties were examined by tension testing and hardness measurements, while microstructure was assessed by scanning electron microscopy and X-ray diffraction analysis. General corrosion performance was evaluated by salt spray testing, immersion testing, potentiodynamic polarization analysis, and electrochemical impedance spectroscopy. Stress corrosion performance was characterized in terms of slow strain rate testing (SSRT). All corrosion tests were carried out in 3.5% NaCl solution at room temperature. The results indicated that the general corrosion resistance of wire arc additive manufacturing (WAAM) samples were quite similar to those of the counterpart ST-37 steel and the stress corrosion resistance of both alloys was adequate. Altogether, it was clearly evident that the WAAM process did not encounter any deterioration in corrosion performance compared to its conventional wrought alloy counterpart.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Vaibhav Nemane ◽  
Satyajit Chatterjee

Abstract Electroless Ni–B–W coating is deposited on low carbon steel in an alkaline sodium borohydride-reduced electroless bath. The mechanical and tribological properties of such coatings are much necessary to be assessed to carry out application-based studies. The present work focuses mainly on the evaluation of hardness and fracture toughness of electroless Ni–B–W coatings using a scratch tester. Coating's response toward scratching is also studied thoroughly. The characteristic short-range order present in its lattice structure causes the generation of a specific behavioral pattern. Furthermore, a linear sliding wear test is carried out on coatings' surface to analyze the wear behavior at different loading conditions. The specific wear rate is observed to be minimum at a normal load of 22.5 N against Si3N4 counterbody. The patterns of tribological behavior of the coating at different load values are examined from the worn surface morphologies. But before embarking on the scratch and sliding wear tests, the synthesized coatings are characterized under field emission scanning electron microscope and X-ray diffraction in an exhaustive manner. The growth rates with respect to time and the changes in morphological aspects of the coating are also evaluated. The present study establishes electroless Ni–B–W deposits as a suitable option for protecting mechanical components against wear.


Author(s):  
R Raveen ◽  
J Yoganandh ◽  
S SathieshKumar ◽  
N Neelakandeswari

Cobalt–graphene nanocomposite coatings possess unique mechanical and tribological properties which attract researchers to explore its potential for various industrial applications. This research work presents the investigation on cobalt–graphene nanocomposite coatings, with two different graphene compositions cobalt–graphene (0.15 and 0.45 wt%) prepared by pulsed electrodeposition from aqueous bath involving cobalt chloride, trisodium citrate, and citric acid on low carbon steel substrate. Studies on coating morphology, microhardness, tribological characteristics such as wear and corrosion for the cobalt–graphene nanocomposite coatings were reported. Cobalt–graphene (0.45 wt%) nanocomposite coating which exhibits low wear rate in all load conditions due to the self-lubricating property of graphene and cobalt–graphene (0.15 wt%) nanocomposite coating shows higher corrosion resistance due to its layered cauliflower surface morphology.


Sign in / Sign up

Export Citation Format

Share Document