The Use of Tertiary-Butyl-Hydroquinone (TBHQ) in Minimizing Oxidation Effects on Palm Oil Based Lubricant Using Four Ball Tribotester

2016 ◽  
Vol 819 ◽  
pp. 484-488 ◽  
Author(s):  
Samion Syahrullail ◽  
Paiman Zulhanafi

The extended uses of mineral oil based lubricant have continuously troubling the global environment issues. The remaining mineral oil resources also being the most debated issues in renewable energy conferences. Vegetable oils are still offering the highest possibility in replacing the mineral oil resources. This research is concerning on how to eliminate one of the disabilities found in palm oil based lubricant which is oxidation. Palm oil possessed unsaturated double bond in which susceptible to oxidation process. The simplest approach is to blend the palm oil based with anti – oxidant agent homogenously. This research was conducted using double fractionated palm oil (SPL) as lubricant and Tertiary-Butyl-Hydroquinone (TBHQ) as anti – oxidant agent to determine the tribology behavior including the coefficient of friction, wear scar diameter and the surface roughness profile. The experiment was also conducted using four-ball tribotester by following ASTM D4172B standard. Superior Mineral Engine Oil (EO) was used as comparison. The results found that SPL+TBHQ was able to reduce the coefficient of friction and provided lower surface roughness value. However it was unable to minimize the mean wear scar diameter compared to EO. The physical appearances of wear worn are also being observed in this research.

2015 ◽  
Vol 76 (9) ◽  
Author(s):  
Mohd Zulfadhli Shaari ◽  
N. R. Nik Roselina ◽  
Salmiah Kasolang ◽  
Koay Mei Hyie ◽  
Mardziah Che Murad ◽  
...  

The performance of a biolubricant especially palm oil is well known to be lower than a mineral oil lubricant. Due to a huge demand towards sustainability, it is extremely important to make an effort for biolubricant to be competitive at the same shelf as the mineral oil in the world’s lubricants market. In this study, tribological properties of the palm oil biolubricant modified with Titanium Oxide (TiO2) nanoparticles as additives were investigated. Palm oil biolubricant with TiO2 nanoparticles at weight ratios of 0 to 0.2 wt% were mixed using an ultrasonic technique. The viscosity of biolubricant modified additives was conducted using standard of ASTMD445. The tribological behavior was investigated using a four-ball tribotester. Results indicate that the viscosities of samples increased as the weight percentage of the TiO2 nanoadditives increased for both 40°C and 100°C temperatures Sample of lubricant with 0.1% wt of the TiO2 nanoadditives produced the lowest coefficient of friction (COF) and wear scar diameter. 


In the present study, palm oil has been tested to study its capability as a lubricant to replace commercial mineral oil. To enrich the performance, nanoparticles additives were added. Previous studies proved that by adding the small size of additives into lubricating oil can lessen the friction and improve anti-wear properties. In this research, the size of the nanoparticle used was below 20nm. Four ball tester following ASTM D4072-94 was conducted to determine the optimum concentration of palm oil bio-lubricant with Nano-clay additive ranged from 0.02% to 0.08%wt. The results discovered that 0.04wt% of Nano-clay additive added into palm oil was the optimum concentration of the lubricant with the coefficient of friction 0.081, which recorded 16% reduction as compared to mineral oil (20W-40) – the reference lubricant. It also shows good anti-wear ability which the wear scar diameter was improved by 32%. The oil was then tested in journal bearing to characterize the hydrodynamic lubrication properties. The properties that have been observed were the coefficient of friction, pressure profile and temperature profile. The results showed that modified palm oil with Nano-clay provided better performance with low coefficient of friction (reduced more than 50% as compared to mineral oil) and also temperature profile (reduced up to 20% compared to mineral oil). As for the pressure profile, even slightly higher pressure recorded for palm oil due to lower viscosity, yet the pressure was improved with the presence of Nano-clay additive. In overall, it had been proven that palm oil with Nano-clay additive shows massive potential as an alternative lubricant to the same range with the current industrial mineral oil.


Jurnal METTEK ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Dedison Gasni ◽  
KM Abdul Razak ◽  
Ahmad Ridwan ◽  
Muhammad Arif

Penelitian ini bertujuan untuk mengetahui efek dari penambahan minyak kelapa dan sawit terhadap sifat fisik dan tribologi pelumas SAE 40. Vegetabel oil, seperti; minyak kelapa dan sawit, memiliki nilai viskositas indek yang tinggi dan sifat pelumasan yang baik terutama didaerah boundary lubrication jika dibandingkan dengan mineral oil (SAE 40). Hal ini disebabkan karena vegetabel oil memiliki kandungan fatty acids yang tidak dimiliki oleh mineral oil. Keunggulan lain dari minyak kelapa dan sawit adanya sifat yang ramah lingkungan karena mudah terurai di alam dan dapat diperbaharui. Pada penelitian ini sifat yang baik dari minyak kelapa dan sawit ini akan dimanfaatkan sebagai zat aditif pada minyak pelumas SAE 40. Pengujian dilakukan terhadap sifat fisik dan tribology dengan penambahan 5%, 10%, 15%, dan 20% berat dari minyak kelapa dan sawit ke dalam minyak pelumas SAE 40. Pengujian sifat fisik terdiri dari pengukuran viskositas pada temperatur 400C dan 1000C dan viskositas index. Pengujian sifat tribologi untuk menentukan keausan dan koefisien gesek berdasarkan ASTM G99 dengan menggunakan alat uji pin on disk. Dari hasil pengujian diperoleh bahwa dengan penambahan minyak kelapa dan sawit kedalam minyak pelumas SAE 40 terjadi peningkatan viskositas indeks. Peningkatan viskositas indeks sebanyak  17% dengan penambahan 20% minyak sawit. Terjadi perubahan sifat tribologi dengan penambahan minyak sawit, berupa penurunan keausan dan nilai koefisien gesek dibandingkan dengan penambahan minyak kelapa. This study aims to determine the effect of coconut and palm oils as additives to physical and tribological properties of SAE 40 lubricating oil . Vegetable oils, such as; coconut oil and palm oil, have high viscosity index and good lubrication properties, especially in boundary lubrication compared to mineral oil. This is due to vegetable oil having fatty acids that are not owned by mineral oil. The advantages of coconut oil and palm oil are environmentally friendly properties because they are biodegradable and renewable. In this study, the good properties of coconut and palm oils will be used as additives in SAE 40 lubricating oil. Tests are carried out on the physical and tribological properties with the addition of 5%, 10%, 15%, and 20% by weight of coconut and palm oils into SAE 40 lubricating oil. Physical properties testing consists of measuring viscosity at temperatures of 400C and 1000C and viscosity index. The tribological test is to determine wear and coefficient of friction based on ASTM G99 using a pin on disc test equipment. From the test results,  it was found that coconut and palm oils as additives into SAE 40 lubricating oil could increase in viscosity index. The increase of  the viscosity index was 17% by adding 20% of palm oil. There was a change of tribological properties in the form of decreasing on the wear and the coefficient of friction with the addition of palm oil compare to addition of coconut oil.


MRS Advances ◽  
2020 ◽  
Vol 5 (54-55) ◽  
pp. 2753-2762
Author(s):  
Mathew Brownell ◽  
Arun K. Nair

AbstractPolytetrafluoroethylene (PTFE) film is observed to increase surface roughness during annealing. Longer annealing times leads to greater surface roughness. The coefficient of friction of PTFE film is affected by the shape of microscale sized particles on the film surface. In this study, we investigate the coefficient of friction of PTFE films using a coarse-grained molecular dynamics model based on experimental observations. We observe how the variation in PTFE chain length and film density affect the topography of PTFE films. We also investigate how these properties of PTFE, and the indenter radius affect the coefficient of friction observed during surface scratch. We find that short PTFE chain lengths create a dense film with greater particle spacing, but longer chains form a mesh structure which reduces the density and creates overlapping portions of particles in the film. We develop a convolutional neural network to classify PTFE film surface and predict the coefficient of friction of a modeled film based solely on the equilibrated film topography. The accuracy of the network was seen to increase when the density and images of internal fiber orientation were added as input features. These results indicate that the coefficient of friction of PTFE films in part is governed by the internal structure of the film.


2019 ◽  
Vol 41 ◽  
pp. 153-160
Author(s):  
Roque Calvo ◽  
Roberto D’Amato ◽  
Emilio Gómez ◽  
Alessandro Ruggiero

2015 ◽  
Vol 88 (1) ◽  
pp. 163-175 ◽  
Author(s):  
R. Mohan ◽  
S. Raja ◽  
G. Saraswathy ◽  
B. N. Das

ABSTRACT Human slip on smooth surfaces is a common accident, even though the footwear soling materials are designed with cleats and treads to provide more friction with the floor. About 20% of footwear is made with thermoplastic rubber (TPR; styrene-butadiene-styrene) soles. The slip resistance property under wet-flooring conditions of this kind of sole is poor because of the nonionic nature of the polymer. Chemical surface modification can be exploited to improve the slip-resistance property of TPR soles. The surface is chemically modified with trichloroisocyanuric acid in a methyl ethyl ketone medium (TCI/MEK; at 1, 2, and 3%) to introduce chlorinated and oxidized moieties to the rubber surface. The extent of surface modification produced in TPR with this change can be tested using attenuated total reflectance–Fourier transform infrared spectroscopy, scanning electron microscopy, and contact angle and surface roughness measurements. The improvement in slip resistance can be evaluated by measuring the coefficient of friction using a dynamic slip-resistance tester. The extent of the change in the functional physical properties, such as surface roughness, contact angle, work adhesion, in slip resistance can be improved by optimizing the concentration of trichloroisocyanuric acid. Physicomechanical properties of unmodified and modified soles that are essential for wear performance can be tested and compared. Quantitative changes on the surface of modified rubber soles increases surface roughness, reduces contact angles, and increases work energy, so there is a considerable increase in the coefficient of friction, especially under wet floor conditions. The chemical surface treatment tends to reduce the bulk mechanical properties, such as tensile strength, elongation at break, and abrasion resistance, because cyanuric acid attacks the sole. The coefficient of friction produces a positive trend at 1 and 2% TCI/MEK treatments, but the trend is negative at a 3% concentration. The optimum surface treatment level for surface modification to enhance the slip resistance of TPR is 2% TCI/MEK.


1970 ◽  
Vol 92 (2) ◽  
pp. 264-272 ◽  
Author(s):  
T. Tsukizoe ◽  
T. Hisakado

A study was made of surface roughness effects on dry friction between two metals, assuming that the asperities are cones of the slopes which depend on the surface roughness. The theoretical explanations were offered for coefficients of friction of the hard cones and spheres ploughing along the soft metal surface. A comparison of calculated values based on these with experimental data shows good agreement. Moreover, theoretical discussion was carried out of surface roughness effects on dry friction between two metal surfaces on the basis of the analyses of the frictional mechanism for a hard slider on the metal surface. The theoretical estimation of the coefficient of friction between two metal surfaces can be carried out by using the relations between the surface roughness and the slopes of the asperities, and the coefficient of friction due to the adhesion at the interface. The experiments also showed that when two metal surfaces are first loaded normally and then subjected to gradually increasing tangential forces, real area of contact between them increases and the maximum tangential microslip of them increases with the increase of the surface roughness.


Author(s):  
Dinesh G. Bansal ◽  
Jeffrey L. Streator

An experiment is conducted to investigate the role of surface roughness on the coefficient of friction and contact resistance of sliding electrical contacts. A hemispherical pin is sliding along both smooth and rough 2-meter rail surface. Tests are performed at both low and moderate sliding speed and for a range of electrical current densities, ranging from 0 to about 12 GA/m2. It was found that surface roughness had a significant influence on the coefficient of friction, with the smoother surfaces exhibiting higher coefficients of friction. Contact resistance, on the other hand, did not show as strong an effect of surface roughness, except for a few parameter combinations. At the higher current densities studied (>10 GA/m2), it was found that the contact resistance values tended to be on the order of 1 mΩ, independent of load, speed and roughness. This convergence may be due to presence of liquid metal film at the interface, which established ideal electrical contact.


1989 ◽  
Vol 111 (2) ◽  
pp. 386-390 ◽  
Author(s):  
Yufeng Li ◽  
Ali Seireg

This paper deals with the development of a dimensionless empirical formula for calculating the coefficient of friction in sliding-rolling steel on steel contacts under different operating conditions in the thermal regime. The effect of lubrication, surface roughness, and surface coating on friction are considered. The formula shows excellent correlation with the experimental tests conducted by many investigators and provides a unified relationship for all the published data.


Author(s):  
Nor Athira Jamaluddin ◽  
Norfazillah Talib ◽  
Amiril Sahab Abdul Sani

The increase of health and environmental consciousness has motivated the effort of technology improvement on lubrication by finding and exploring another potential alternative to replace mineral-based metalworking fluids. Due to this concern, vegetable-based oils have been recognised as an ideal lubricating base oil in machining due to low toxicity, biodegradable, and renewable energy sources. Moreover, nanofluids have attracted enormous attention in the field of lubrication due to excellent physical and chemical properties that can enhance tribological characterisation. The objective of the current work is to develop a new formulation of nanofluids in modified jatropha oil (MJO) by adding hexagonal boron nitride (hBN) and graphene nanoparticle additives at the lowest concentration (0.01, 0.025. and 0.05 wt. %). The physicochemical tests in terms of kinematic viscosity and viscosity index were conducted and compared with synthetic ester (SE). Tribology testing was conducted through four-ball test to determine the coefficient of friction, mean wear scar diameter, and friction torque. The result shows a significant improvement of MJO samples by adding nanoparticle additives compared to the SE. MJOg2 (MJO + 0.025 wt. % of graphene) exhibited excellent tribological behaviour by providing the lowest coefficient of friction and friction torque. Meanwhile, MJOh1 (MJO + 0.01 wt. % of hBN) provided with a smaller mean wear scar diameter among other lubricant samples. Conclusively, the addition of nanoparticle additives significantly enhanced the tribological characteristics and is highly suitable as a substitute for SE.


Sign in / Sign up

Export Citation Format

Share Document