Etching Process Effects of CMOS Transistor Gate Manufacturing Nanotechnology Fabrication Integration

2011 ◽  
Vol 83 ◽  
pp. 91-96
Author(s):  
Chun Jen Weng

As the nanotechnology gate is scaling down, the fabrication technology of gate spacer for CMOS transistor becomes more critical in manufacturing processes. For CMOS technologies, sidewall spacers play an important role in the control of short channel effects by offsetting ion implantation profiles from the edge of the gate. A sidewall spacer patterning technology yields critical dimension variations of minimum-sized features much smaller than that achieved by optical Complementary Metal–Oxide–Semiconductor (CMOS) fabrication processes integration. The present study is to overcome the fabrication limitations and more particularly focus on etching processes integration on structural and formation processing for complementary metal oxide semiconductor nanofabrication process on gate spacer technology and electrical characteristics performance of nanotechnology gate structure were included. Based on the investigation of the etching effect and interface film variation on the electrical characteristics of the gate oxide on etching profile and their impacts on the sidewall transistor gate structure, a novel etching integration process for optimal controlled sidewall gate spacer fabrication was developed.

2020 ◽  
Vol 18 (6) ◽  
pp. 468-476
Author(s):  
Prateek Kumar ◽  
Maneesha Gupta ◽  
Naveen Kumar ◽  
Marlon D. Cruz ◽  
Hemant Singh ◽  
...  

With technology invading nanometer regime performance of the Metal-Oxide-semiconductor Field Effect Transistor is largely hampered by short channel effects. Most of the simulation tools available do not include short channel effects and quantum effects in the analysis which raises doubt on their authenticity. Although researchers have tried to provide an alternative in the form of tunnel field-effect transistors, junction-less transistors, etc. but they all suffer from their own set of problems. Therefore, Metal-Oxide-Semiconductor Field-Effect Transistor remains the backbone of the VLSI industry. This work is dedicated to the design and study of the novel tub-type Metal-Oxide-Semiconductor Field-Effect Transistor. For simulation Non-Equilibrium Green’s Function is used as the primary model of simulation. The device is analyzed under different physical variations like work function, permittivity, and interface trap charge. This work uses Silicon-Molybdenum Disulphide heterojunction and Silicon-Tungsten Disulphide heterojunction as channel material. Results for both the heterojunctions are compared. It was analyzed that Silicon-Molybdenum Disulphide heterojunction provides better linearity and Silicon-Tungsten Disulphide heterojunction provides better switching speed than conventional Metal-Oxide-Semiconductor Field-Effect Transistor.


2014 ◽  
Vol 13 (02) ◽  
pp. 1450012 ◽  
Author(s):  
Manorama Chauhan ◽  
Ravindra Singh Kushwah ◽  
Pavan Shrivastava ◽  
Shyam Akashe

In the world of Integrated Circuits, complementary metal–oxide–semiconductor (CMOS) has lost its ability during scaling beyond 50 nm. Scaling causes severe short channel effects (SCEs) which are difficult to suppress. FinFET devices undertake to replace usual Metal Oxide Semiconductor Field Effect Transistor (MOSFETs) because of their better ability in controlling leakage and diminishing SCEs while delivering a strong drive current. In this paper, we present a relative examination of FinFET with the double gate MOSFET (DGMOSFET) and conventional bulk Si single gate MOSFET (SGMOSFET) by using Cadence Virtuoso simulation tool. Physics-based numerical two-dimensional simulation results for FinFET device, circuit power is presented, and classifying that FinFET technology is an ideal applicant for low power applications. Exclusive FinFET device features resulting from gate–gate coupling are conversed and efficiently exploited for optimal low leakage device design. Design trade-off for FinFET power and performance are suggested for low power and high performance applications. Whole power consumptions of static and dynamic circuits and latches for FinFET device, believing state dependency, show that leakage currents for FinFET circuits are reduced by a factor of over ~ 10X, compared to DGMOSFET and ~ 20X compared with SGMOSFET.


2010 ◽  
Vol 154-155 ◽  
pp. 938-941
Author(s):  
Chun Jen Weng

As wafer nanotechnology gate is scaling down, the fabrication technology of gate spacer for transistor becomes more critical in manufacturing processes. Because wafer fabrication technologies, sidewall spacers play an important role in the control of short channel effects by offsetting ion implantation profiles from the edge of the gate. The present study is to overcome the fabrication processes limitations and proposed modified feasible etching processes integration on the formation processing for complementary metal oxide semiconductor nanofabrication process of gate spacer technology and electrical characteristics.


Sign in / Sign up

Export Citation Format

Share Document