Etching Effects of Nanotechnology Fabrication on CMOS Transistor Gate Wafer Manufacturing Process Integration

2010 ◽  
Vol 154-155 ◽  
pp. 938-941
Author(s):  
Chun Jen Weng

As wafer nanotechnology gate is scaling down, the fabrication technology of gate spacer for transistor becomes more critical in manufacturing processes. Because wafer fabrication technologies, sidewall spacers play an important role in the control of short channel effects by offsetting ion implantation profiles from the edge of the gate. The present study is to overcome the fabrication processes limitations and proposed modified feasible etching processes integration on the formation processing for complementary metal oxide semiconductor nanofabrication process of gate spacer technology and electrical characteristics.

2011 ◽  
Vol 83 ◽  
pp. 91-96
Author(s):  
Chun Jen Weng

As the nanotechnology gate is scaling down, the fabrication technology of gate spacer for CMOS transistor becomes more critical in manufacturing processes. For CMOS technologies, sidewall spacers play an important role in the control of short channel effects by offsetting ion implantation profiles from the edge of the gate. A sidewall spacer patterning technology yields critical dimension variations of minimum-sized features much smaller than that achieved by optical Complementary Metal–Oxide–Semiconductor (CMOS) fabrication processes integration. The present study is to overcome the fabrication limitations and more particularly focus on etching processes integration on structural and formation processing for complementary metal oxide semiconductor nanofabrication process on gate spacer technology and electrical characteristics performance of nanotechnology gate structure were included. Based on the investigation of the etching effect and interface film variation on the electrical characteristics of the gate oxide on etching profile and their impacts on the sidewall transistor gate structure, a novel etching integration process for optimal controlled sidewall gate spacer fabrication was developed.


2019 ◽  
Vol 16 (10) ◽  
pp. 4179-4187
Author(s):  
Amanpreet Sandhu ◽  
Sheifali Gupta

The Conventional Complementary Metal oxide semiconductor (CMOS) technology has been revolutionized from the past few decades. However, the CMOS circuit faces serious constraints like short channel effects, quantum effects, doping fluctuations at the nanoscale which limits them to further scaling down at nano meter range. Among various existing nanotechnologies, Quantum dot Cellular Automata (QCA) provides new solution at nanocircuit design. The technical advancement of the paper lies in designing a high performance RAM cell with less QCA cells, less occupational area and lower power dissipation characteristics. The design occupies 12.5% lower area, 16.6% lower input to output delay, and dissipates 18.26% lesser energy than the designs in the literature. The proposed RAMcell is robust due to lesser noise variations. Also it has less fabrication cost due to absence of rotated cells.


2019 ◽  
Vol 14 (12) ◽  
pp. 1672-1679 ◽  
Author(s):  
Ningombam Ajit Kumar ◽  
Aheibam Dinamani Singh ◽  
Nameirakpam Basanta Singh

A 2D surface potential analytical model of a channel with graded channel triple material double gate (GCTMDG) Silicon-on-Nothing (SON) MOSFET is proposed by intermixing the benefits of triple material in gate engineering and graded doping in the channel. The surface potential distribution function of the GCTMDG SON MOSFET is obtained by solving the Poisson's equation, applying suitable boundary conditions, and using a parabolic approximation method. It is seen in the proposed device that the Short Channel Effects (SCEs) are subdued due to the apprehensible step in the surface potential profile that screen the potential of the drain. The effects of the various device parameters are studied to check the merit of the device. For the validation of the proposed device, it is compared with the simulated results of ATLASTM, a device simulator from SILVACO.


Author(s):  
Nandhaiahgari Dinesh Kumar ◽  
Rajendra Prasad Somineni ◽  
CH Raja Kumari

<span>CMOS transistors are most widely used for the design of computerized circuits, when scaling down the nanometer technology these devices faces the short channel effects and causes I-V characteristics to depart from the traditional MOSFETs, So the researchers have developed the other transistors technologies like CNTFET and GNRFET. Carbon nanotube field effect transistor is one of the optimistic technologies and it is a three terminal transistor similar to MOSFET. The semiconducting channel between the two terminals called source and drain comprises of the nano tube which is made of carbon. Graphene nano ribbon filed effect transistor is the most optimistic technology here the semiconducting channel is made of graphene. When contrasted with barrel shaped CNTFETs, GNRFETs can be prepared in situ process, transfer-free and silicon compatible, thus have no passage related and alignment problems as faced in CNTFET devices. This paper presents different 1-bit Full Adder Cells (FACs) like TG MUX-based FAC (TGM), MN MUX-based FAC (MNM), proposed TG Modified MUX-based FAC (TGMM) and another proposed MN Modified MUX-based FAC (MNMM) are designed using different technologies like CNTFET and GNRFET at 16nm technology with supply voltage of 0.85v and simulation is done by using Synopsys HSPICE Tool and the proposed designs are best when compared to the TGM and MNM FACs in terms of Static and Dynamic powers Dissipations and Delay.</span>


Author(s):  
Nor Fareza Kosmani ◽  
Fatimah A.Hamid ◽  
M. Anas Razali

<span lang="EN-MY">Due to the rapid scaling of </span><span>Complementary Metal-Oxide-Semiconductor</span><span lang="EN-MY"> (CMOS), the structure of the planar MOSFET approaches the scaling limits when the short channel effects (SCEs) become the main problem. The Double-Gate and Gate-all-Around nanowire MOSFETs are said to be the promising candidate to replace the planar MOSFET in order to pursue CMOS scaling. Therefore, this paper present the result of device simulation using Silvaco TCAD tools for Double-Gate and Gate-All-Around nanowire MOSFETs. The purpose of this simulation work is to compare the performance of GAA nanowire and DG MOSFET and then study the effect of physical parameter on electrical behavior for both devices. The result of the simulated model of Gate-All-Around nanowire is compared with published data.  It was found that when the gate length of DG was scaled from 80nm to 10nm, the subthreshold slope is increasing from 62mV/dec to 162.7mV/dec. While for GAA, the subthreshold slope is increasing from 65.8mV/dec to 127mV/dec. The threshold voltage in DG and GAA at Lg=80nm are 0.40646V and </span><span>-0.17505V </span><span lang="EN-MY">respectively. Even though heavy doping was good for suppressing SCE, the lower doping concentration is desirable as the DG and GAA nanowire had higher on-state currents with 1.42x10<sup>-3</sup>Aand 3.23x10<sup>-4</sup>A respectively. It also showed that the threshold voltage of DG and GAA nanowire increase from -0.0734V to 0.2312V and -0.0319V to 0.2232V respectively when the channel doping is varies from lower to higher concentration.</span>


Sign in / Sign up

Export Citation Format

Share Document