Designing the Partially Porous Journal Bearings of an Aerostatic Spindle

2017 ◽  
Vol 868 ◽  
pp. 110-117
Author(s):  
Te Yen Huang ◽  
Song Chiang Shen ◽  
Shao Yu Hsu

The aerostatic journal bearings are widely used in ultra-precision machine tools. Due to remarkable ability of the porous medium in flow restriction, the porous aerostatic journal bearings are better than other types of aerostatic bearings in load carrying capacity, stiffness, damping and dynamic stability. The partially porous aerostatic journal bearing has the advantages of easy production and low cost. Moreover, the gap between the porous insert and the spindle can be adjusted to reduce the eccentricity due to high speed rotation. In this study, the effects of the size of the porous insert and the thickness of the air gap between the spindle and the housing on the gap pressure, the stiffness and the load carrying capability of the partially porous aerostatic journal bearing were figured out for performance evaluation.

Author(s):  
I Pierre ◽  
M Fillon

Hydrodynamic journal bearings are essential components of high-speed machinery. In severe operating conditions, the thermal dissipation is not a negligible phenomenon. Therefore, a three-dimensional thermohydrodynamic (THD) analysis has been developed that includes lubricant rupture and re-formation phenomena by conserving the mass flowrate. Then, the predictions obtained with the proposed numerical model are validated by comparison with the measurements reported in the literature. The effects of various geometric factors (length, diameter and radial clearance) and operating conditions (rotational speed, applied load and lubricant) on the journal bearing behaviour are analysed and discussed in order to inform bearing designers. Thus, it can be predicted that the bearing performance obtained highly depends on operating conditions and geometric configuration.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Venkata K. Jasti ◽  
Martin C. Marinack ◽  
Deepak Patil ◽  
C. Fred Higgs

This work demonstrates that granular flows (i.e., macroscale, noncohesive spheres) entrained into an eccentrically converging gap can indeed actually exhibit lubrication behavior as prior models postulated. The physics of hydrodynamic lubrication is quite well understood and liquid lubricants perform well for conventional applications. Unfortunately, in certain cases such as high-speed and high-temperature environments, liquid lubricants break down making it impossible to establish a stable liquid film. Therefore, it has been previously proposed that granular media in sliding convergent interfaces can generate load carrying capacity, and thus, granular flow lubrication. It is a possible alternative lubrication mechanism that researchers have been exploring for extreme environments, or wheel-regolith traction, or for elucidating the spreadability of additive manufacturing materials. While the load carrying capacity of granular flows has been previously demonstrated, this work attempts to more directly uncover the hydrodynamic-like granular flow behavior in an experimental journal bearing configuration. An enlarged granular lubricated journal bearing (GLJB) setup has been developed and demonstrated. The setup was made transparent in order to visualize and video capture the granular collision activity at high resolution. In addition, a computational image processing program has been developed to process the resulting images and to noninvasively track the “lift” generated by granular flow during the journal bearing operation. The results of the lift caused by granular flow as a function of journal rotation rate are presented as well.


Author(s):  
P. S. Keogh ◽  
M. M. Khonsari

The evaluation of the thermohydrodynamic (THD) performance of journal bearings continues to be an important issue. This is particularly so for high speed or heavily loaded bearing designs. This paper focuses attention on the thermal boundary conditions at the lubricant-bearing interface. The solid component conduction problem is solved in advance of the main THD analysis. Boundary conditions are then imposed on the lubricant THD analysis through use of an appropriate influence coefficient matrix that incorporates the solid component conduction problem. This avoids the current practice of solving the lubricant and solid component problems separately in an iterative loop to achieve continuous temperatures and heat fluxes at the interface. Instead, only the lubricant problem needs to be solved using the boundary conditions imposed by the influence coefficient matrix.


Author(s):  
S. Strzelecki ◽  
Z. Towarek

The design of turbines and compressors operating at the high rotational speeds applies the 3-lobe journal bearings. In many cases the classic 3-lobe journal bearings supporting the rotors, are showing the problem of rotor stability. This problem can be avoided by the application of 3-lobe Offset bearings. This type of bearing fulfils the conditions of reliable bearing design and good stability in the case of high speed rotating machines.


Author(s):  
Sanyam Sharma ◽  
Chimata M Krishna

The plain circular journal bearings are not found to be stable by researchers when used in high speed rotating machineries. Hence, extensive research in the study of stability characteristics of non-circular bearings or lobed bearings assumed importance, of late. Present article deals with the stability analysis of non-circular offset bearing by taking selected set of input and output parameters. Modified Reynolds equation for micropolar lubricated rigid journal bearing system is solved using finite element method. Two kinds of input parameters namely, offset factors (0.2, 0.4) and aspect ratios (1.6, 2.0) have been selected for the study. The important output characteristics such as load, critical mass, whirl frequency ratio, and threshold speed are computed and plotted for various set of values of input parameters. The results obtained indicate that micropolar lubricated circular offset bearing is highly stable for higher offset factor and higher aspect ratio.


Author(s):  
A. El-Shafei ◽  
A. S. Dimitri

Journal Bearings are excellent bearings due to their large load carrying capacity and favorable damping characteristics. However, Journal bearings are known to be prone to instabilities. The oil whirl and oil whip instabilities limit the rotor maximum rotating speed. In this paper, a novel approach is used to control the Journal bearing (JB) instability. An Active Magnetic Bearing (AMB) is used to overcome the JB instability and to increase its range of operation. The concept is quite simple: rather than using the AMB as a load carrying element, the AMB is used as a controller only, resulting in a much smaller and more efficient AMB. The load carrying is done by the Journal bearings, exploiting their excellent load carrying capabilities, and the JB instability is overcome with the AMB. This results in a combined AMB/JB that exploits the advantages of each device, and eliminates the deficiencies of each bearing. Different controllers for the AMB to control the JB instability are examined and compared theoretically and numerically. The possibility of collocating the JB and the AMB is also examined. The results illustrate the effectiveness of the concept.


Author(s):  
S. Strzelecki

Journal bearings of high speed turbocompressors, compressors and heavy duty high speed turbine gearboxes operate at journal peripheral speeds like 150 m/s. The flow of lubricant in such bearings is not laminar but super laminar or turbulent. It results in the increase in power loss and in the decrease of the bearing stability. The ground for the safe operation of high speed journal bearings at proper oil film temperature and with less power loss is the full knowledge of bearing performances at the turbulent oil film.


Author(s):  
Lin Wang ◽  
Yu Zhang ◽  
Guoding Chen

The performance of supporting journal bearing of the star gear transmission system in the geared turbo fan engine (GTF) is analyzed. A thermal-elastohydrodynamic analysis model was developed for textured journal bearing used in high-speed and high-specific-pressure conditions. The Navier-Stokes equation, energy equation, and viscosity-temperature equation were calculated by the computational fluid dynamics method. The influence of elastic deformation on bearing thermal hydrodynamic performance was studied in detail. The results indicate that the elastic deformation has an influence on the distribution of oil temperature and oil pressure. Besides, a comparative thermo-elastohydrodynamic analysis was conducted between the textured bearing and the un-textured bearing, and the discrepancies of maximum oil pressure, load carrying capacity and the maximum oil temperature are few. However, the textured bearing has a lower elastic deformation than the un-textured bearing.


Author(s):  
L. X. Liu ◽  
Z. S. Spakovszky

The high-speed micro hydrostatic gas journal bearings used in the high-power density MIT micro-engines are of very low aspect ratio with an L/D of less than 0.1 and are running at surface speeds of order 500 m/s. These ultra-short high-speed bearings exhibit whirl instability limits and a dynamic behavior much different from conventional hydrostatic gas bearings. The design space for stable high-speed operation is confined to a narrow region and involves singular behavior (Spakovszky and Liu (2003)). This together with the limits on achievable fabrication tolerance that can be achieved in the silicon chip manufacturing technology severely affects bearing operability and limits the maximum achievable speeds of the micro turbomachinery. This paper introduces a novel variation of the axial-flow hydrostatic micro-gas journal bearing concept which yields anisotropy in bearing stiffness. By departing from axial symmetry and introducing biaxial symmetry in hydrostatic stiffness, the bearing’s top speed is increased and fabrication tolerance requirements are substantially relieved making more feasible extended stable high-speed bearing operation. The objectives of this work are: (1) to characterize the underlying physical mechanisms and the dynamic behavior of this novel bearing concept, and (2) to report on the design, implementation and test of this new micro-bearing technology. The technical approach involves the combination of numerical simulations, experiment, and simple, first principles based modeling of the gas bearing flow field and the rotordynamics. A simple description of the whirl instability threshold with stiffness anisotropy is derived explaining the instability mechanisms and linking the governing parameters to the whirl ratio and stability limit. An existing analytical hydrostatic gas bearing model is extended and modified to guide the bearing design with stiffness anisotropy. Numerical simulations of the full non-linear governing equations are conducted to validate the theory and the novel bearing concept. Experimental results obtained from a micro-bearing test device are presented and show good agreement between the theory and the measurements. The theoretical increase in achievable bearing top speed and the relief in fabrication tolerance requirements due to stiffness anisotropy are quantified and important design implications and guidelines for micro gas journal bearings are discussed.


2021 ◽  
Author(s):  
Giuseppe Vannini ◽  
Alice Innocenti ◽  
Filippo Cangioli ◽  
Kim Jongsoo

Abstract The current oil and gas market trends lead the compressor OEMs to increase the rotational speed and maximize the efficiency given a target power output. Especially when applied to large process gas centrifugal compressors, characterized by high-flexibility ratio, the achievement of these targets pushes the rotordynamic design towards its limit in terms of API requirements. Tiling pad journal bearings (TPJBs) are commonly adopted in high-speed applications for their inherent stability characteristics that permit to ensure the rotordynamic stability and eliminate self-induced sub-synchronous vibrations. The experimental activities subject of this paper aim to assess, for the first time, the rotordynamic behaviour of a large dummy rotor (6 meter long and total weight of 8 tons) equipped with Flexure Pivot tilting-pad journal bearing and Integral squeeze film damper (ISFD). This system level testing program has been performed in the Authors’ high-speed balancing bunker properly equipped with special instrumentation such as: flow meters and pad temperature probes to monitor journal bearing behaviour, displacement probes to measure rotor vibrations relative to the bearings. The main objective of the experimental activity is the full assessment of the rotordynamic response and the selection of the best configuration to target the design requirements (e.g. FPJB and “Active ISFD” vs. FPJB and “Inactive ISFD”).


Sign in / Sign up

Export Citation Format

Share Document