Properties of Cement Based Composite with Fine Ground Recycled Concrete

2014 ◽  
Vol 1000 ◽  
pp. 110-113 ◽  
Author(s):  
Karel Šeps ◽  
Iva Broukalová

The paper contributes to sustainable building; it deals with the topics recycling of concrete waste and partial substitution of classical cement binder by more ecologically friendly binder made from waste materials. The investigations focused on hydraulic properties of micro-ground recycled concrete. Several mixtures were designed with the components: cement, ultra-fine ground recycled concrete and water. Testing specimens with dimensions 40x40x160 mm were elaborated and mechanical properties were tested. The results of tests are analyzed and influence of substitute binder evaluated.

2020 ◽  
Vol 30 (3) ◽  
pp. 201-213
Author(s):  
Ghania Nigri ◽  
Yacine Cherait ◽  
Soraya Nigri

Abstract This research work discusses both the physical and durability characteristics of newly blended cement containing waste crushed brick. This waste is used as a partial substitution for clinker in cement. Thus, blended cements are obtained by grinding and homogenizing clinker, waste brick, and gypsum. Four compositions containing 0%, 10%, 20%, and 30% of waste materials were prepared and submitted to various characterization tests. The introduction of brick powder improved the physical characteristics, therefore; it improved the mechanical properties and durability performance of the new cement compared to the reference, prepared with 0% addition. More particularly, it resisted sulfuric acid (H2SO4) attack after fixation of portlandite by pozzolan.


2016 ◽  
Vol 677 ◽  
pp. 233-240 ◽  
Author(s):  
Wojciech Kubissa ◽  
Roman Jaskulski ◽  
Artur Koper ◽  
Marcin Supera

In the article the possibility of utilization of two waste materials: Recycled Concrete Aggregate (RCA) fraction 4-16 mm and Class F fly ash (from coal burning power plant) in high perfor-mance concrete (HPC) was presented. Concrete with RCA were made with varying amount of cement and Suplementary Cementing Materials (SCM). The specimens of concrete were tested to compare mechanical properties as well as some properties related to the durability of concrete. Compression strength values up to 71.40 MPa were achieved and good values of properties determinig durability of reinforced concrete structures.


2016 ◽  
Vol 825 ◽  
pp. 69-72 ◽  
Author(s):  
Jaroslav Topič ◽  
Zdeněk Prošek ◽  
Josef Fládr ◽  
Václav Nežerka ◽  
Pavel Tesárek

The waste production from construction sites become very serious problem. Recycling is the best option for disposal of such waste, and the proper sorting and knowledge of the recycled concrete history allows its further use in the construction. The current studies are mostly focused on utilization of recycled concrete in the form of aggregate. The presented work is focused on the utilization of Finely Ground Recycled Concrete (FGRC) used as a filler and partial substitution for binder. Recycled concrete was ground from concrete railway sleepers in the Lavaris Company (Czech Republic). Through the testing of mechanical properties, we demonstrate the influence of FGRC’s amount in cement paste on mechanical properties of the composite. To clearly show the relationship between the amount of FGRC and the composite properties, samples with 33, 67 and 100 wt. % of cement replaced by FGRC were tested. The composite with 33 wt. % of FGRC attained the compressive and flexural strength comparable with reference cement paste without any FGRC additions. The results indicate that the partial substitution of cement by FGRC could lead to a cost reduction of cement composites with minimal impact on their mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2323
Author(s):  
Yubing Du ◽  
Zhiqing Zhao ◽  
Qiang Xiao ◽  
Feiting Shi ◽  
Jianming Yang ◽  
...  

To explore the basic mechanical properties and size effects of recycled aggregate concrete (RAC) with different substitution ratios of coarse recycled concrete aggregates (CRCAs) to replace natural coarse aggregates (NCA), the failure modes and mechanical parameters of RAC under different loading conditions including compression, splitting tensile resistance and direct shear were compared and analyzed. The conclusions drawn are as follows: the failure mechanisms of concrete with different substitution ratios of CRCAs are similar; with the increase in substitution ratio, the peak compressive stress and peak tensile stress of RAC decrease gradually, the splitting limit displacement decreases, and the splitting tensile modulus slightly increases; with the increase in the concrete cube’s side length, the peak compressive stress of RAC declines gradually, but the integrity after compression is gradually improved; and the increase in the substitution ratio of the recycled aggregate reduces the impact of the size effect on the peak compressive stress of RAC. Furthermore, an influence equation of the coupling effect of the substitution ratio and size effect on the peak compressive stress of RAC was quantitatively established. The research results are of great significance for the engineering application of RAC and the strength selection of RAC structure design.


2021 ◽  
Vol 13 (13) ◽  
pp. 7498
Author(s):  
Tan Li ◽  
Jianzhuang Xiao

Concrete made with large-size recycled aggregates is a new kind of recycled concrete, where the size of the recycled aggregate used is 25–80 mm, which is generally three times that of conventional aggregate. Thus, its composition and mechanical properties are different from that of conventional recycled concrete and can be applied in large-volume structures. In this study, recycled aggregate generated in two stages with randomly distributed gravels and mortar was used to replace the conventional recycled aggregate model, to observe the internal stress state and cracking of the large-size recycled aggregate. This paper also investigated the mechanical properties, such as the compressive strength, crack morphology, and stress–strain curve, of concrete with large-size recycled aggregates under different confining pressures and recycled aggregate incorporation ratios. Through this research, it was found that when compared with conventional concrete, under the confining pressure, the strength of large-size recycled aggregate concrete did not decrease significantly at the same stress state, moreover, the stiffness was increased. Confining pressure has a significant influence on the strength of large-size recycled aggregate cocrete.


2021 ◽  
Vol 13 (11) ◽  
pp. 6277
Author(s):  
Ibrahim Sharaky ◽  
Usama Issa ◽  
Mamdooh Alwetaishi ◽  
Ahmed Abdelhafiz ◽  
Amal Shamseldin ◽  
...  

In this study, the recycled concrete aggregates and powder (RCA and RCP) prepared from basaltic concrete waste were used to replace the natural aggregate (NA) and cement, respectively. The NA (coarse and fine) was replaced by the recycled aggregates with five percentages (0%, 20%, 40%, 60% and 80%). Consequently, the cement was replaced by the RCP with four percentages (0%, 5%, 10% and 20%). Cubes with 100 mm edge length were prepared for all tests. The compressive and tensile strengths (fcu and ftu) and water absorption (WA) were investigated for all mixes at different ages. Partial substitution of NA with recycled aggregate reduced the compressive strength with different percentages depending on the type and source of recycled aggregate. After 28 days, the maximum reduction in fcu value was 9.8% and 9.4% for mixtures with coarse RCA and fine RCA (FRCA), respectively. After 56 days, the mixes with 40% FRCA reached almost the same fcu value as the control mix (M0, 99.5%). Consequently, the compressive strengths of the mixes with 10% RCA at 28 and 56 days were 99.3 and 95.2%, respectively, compared to those of M0. The mixes integrated FRCA and RCP showed higher tensile strengths than the M0 at 56 d with a very small reduction at 28 d (max = 3.4%). Moreover, the fcu and ftu values increased for the late test ages, while the WA decreased.


2020 ◽  
Vol 12 (8) ◽  
pp. 3154 ◽  
Author(s):  
Hedelvan Emerson Fardin ◽  
Adriana Goulart dos Santos

This research aimed to investigate the mechanical and physical properties of Roller Compacted Concrete (RCC) used with Recycled Concrete Aggregate (RCA) as a replacement for natural coarse aggregate. The maximum dry density method was adopted to prepare RCC mixtures with 200 kg/m³ of cement content and coarse natural aggregates in the concrete mixture. Four RCC mixtures were produced from different RCA incorporation ratios (0%, 5%, 15%, and 30%). The compaction test, compressive strength, splitting tensile strength, flexural tensile strength, and modulus of elasticity, porosity, density, and water absorption tests were performed to analyze the mechanical and physical properties of the mixtures. One-way Analysis of Variance (ANOVA) was used to identify the influences of RCA on RCC’s mechanical properties. As RCA increased in mixtures, some mechanical properties were observed to decrease, such as modulus of elasticity, but the same was not observed in the splitting tensile strength. All RCCs displayed compressive strength greater than 15.0 MPa at 28 days, splitting tensile strength above 1.9 MPa, flexural tensile strength above 2.9 MPa, and modulus of elasticity above 19.0 GPa. According to Brazilian standards, the RCA added to RCC could be used for base layers.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2865
Author(s):  
Md Jihad Miah ◽  
Md. Munir Hossain Patoary ◽  
Suvash Chandra Paul ◽  
Adewumi John Babafemi ◽  
Biranchi Panda

This paper investigates the possibility of utilizing steel slags produced in the steelmaking industry as an alternative to burnt clay brick aggregate (BA) in concrete. Within this context, physical, mechanical (i.e., compressive and splitting tensile strength), length change, and durability (porosity) tests were conducted on concrete made with nine different percentage replacements (0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100% by volume of BA) of BA by induction of furnace steel slag aggregate (SSA). In addition, the chemical composition of aggregate through X-ray fluorescence (XRF) analysis and microstructural analysis through scanning electron microscopy (SEM) of aggregates and concrete were performed. The experimental results show that the physical and mechanical properties of concrete made with SSA were significantly higher than that of concrete made with BA. The compressive and tensile strength increased by 73% when SSA fully replaced BA. The expansion of concrete made with SSA was a bit higher than the concrete made with BA. Furthermore, a significant lower porosity was observed for concrete made with SSA than BA, which decreased by 40% for 100% SSA concrete than 100% BA concrete. The relation between compressive and tensile strength with the porosity of concrete mixes are in agreement with the relationships presented in the literature. This study demonstrates that SSA can be used as a full replacement of BA, which is economical, conserves the natural aggregate, and is sustainable building material since burning brick produces a lot of CO2.


2015 ◽  
Vol 67 (5) ◽  
pp. 247-256 ◽  
Author(s):  
Desirée Rodríguez-Robles ◽  
Julia García-González ◽  
Andrés Juan-Valdés ◽  
Julia Ma Morán-del Pozo ◽  
M. Ignacio Guerra-Romero

2013 ◽  
Vol 438-439 ◽  
pp. 749-755 ◽  
Author(s):  
Tong Hao ◽  
Dong Li

By the experimental studying on the basic mechanical properties of recycled concrete hollow block masonry, the compressive and shear behavior of recycled aggregate concrete hollow block masonry under different mortar strength were analyzed. Research indicated that the compressive and shear behavior of recycled aggregate concrete hollow block masonry was similar to that of ordinary concrete hollow block masonry. The normal formula was recommended to calculate the compressive strength of the masonry. The shear strength of the masonry was affected by the mortar strength. The shear strength calculation formula of recycled concrete hollow block masonry was proposed according to the formula of masonry design code. The calculating results were in good agreement with the test results.


Sign in / Sign up

Export Citation Format

Share Document