Crossbeam Analysis and Structure Optimization of Special-Shaped Stone Combined Machining Center

2010 ◽  
Vol 102-104 ◽  
pp. 620-624 ◽  
Author(s):  
Ke Zhang ◽  
Ju Ping Ren ◽  
Hua Guo ◽  
Yu Hou Wu ◽  
Kai Jun Zhao

With the increase of the quantity demanded, stone products with high quality, really artsy and diversification become more and more best-selling. The special-shaped stone machining equipments with numerical control, single machine intelligent, high speed, high efficiency and multi-function combination must be manufactured to produce these stone products. In this paper, 3D design and project optimization for special-shaped stone composite machining center are carried by Solid Works and innovative design. Model analysis of the crossbeam in this machining center is carried by ANSYS and the maximum deformation value in the crossbeam is found. The crossbeam structure is optimized by comparison and analysis. The design and manufacture of special-shaped stone combined machining center is very helpful for development of manufacturing.

2010 ◽  
Vol 44-47 ◽  
pp. 280-283
Author(s):  
Zhen Yu Zhao ◽  
Li Xin Huang ◽  
Yong Shan Xiao ◽  
Bai Liu

In the manufacturing industry, high speed milling plays a very important role. The paper introduced a number of essential core component of the key technologies in high speed machining center such as powerful computer numerical control systems, motion control card, post –processing method, processed trajectory control technology (Look Ahead) and high speed processing of programming. The speed control, post processing and look-ahead control are focused on considering, and the corresponding improved methods are brought forward.


2013 ◽  
Vol 706-708 ◽  
pp. 882-887
Author(s):  
Ji Zhu Liu ◽  
Yang Jun Wang ◽  
Tao Chen ◽  
Ming Qiang Pan ◽  
Li Guo Chen ◽  
...  

Iron loss will be rapidly increased when the permanent magnet iron core synchronous motor runs at a high speed, which makes the motor produce so much heat that causes low efficiency of the motor and even burns out the motor. The iron-core-free permanent magnet synchronous motor remedies this defect and has a high efficiency at high speed. This article makes a comparative analysis on the iron-core-free permanent magnet synchronous motor torque density with different slot engagement classifications. The paper puts forward an optimized model of permanent magnet synchronous motor without the iron core. The technology of the permanent magnet synchronous motor without iron core is studied based on this model which provides a method to design and manufacture the iron-core-free permanent magnet synchronous motor.


2011 ◽  
Vol 467-469 ◽  
pp. 247-251
Author(s):  
Zhen Yu Zhao ◽  
Ming Jun Liu ◽  
Yong Shan Xiao ◽  
Bai Liu

High speed machining (HSM) features in high efficiency, high precision, high flexibility and high quality. The key techniques on HSM such as linear interpolation, circular interpolation, cubic B-spline curve interpolation, non-uniform rational B-spline (NURBS) curve interpolation and their respective characteristics are paid more attention and expatiated. Circle arcs are approximated by using intersecting polygons instead of general inscribed polygons. NURBS interpolation algorithms can reduce feedrate fluctuation and improve machining accuracy.


2016 ◽  
Vol 10 (2) ◽  
pp. 253-261
Author(s):  
Tomoya Hida ◽  
◽  
Tetsuya Asano ◽  
Chiharu Higashino ◽  
Masaaki Kanamaru ◽  
...  

Five-axis machines and multi-tasking machines are widely used because they facilitate integration of work processes and simplification of jigs and set-ups. Along with effective machine use, development of optimum machining such as research on tools and cutting methods to achieve high-speed cutting and increase of material removal rate is being investigated. While these efforts have greatly contributed to furthering of automation and cost reduction at the manufacturing site, complex machine motions and increased demanding work processes can lead to unexpected collisions and tool breakages. To prevent tool breakage caused by unexpected overloading or to improve the inefficient feed rate on the basis of safety considerations, simulations based on numerical control (NC) data are usually performed in advance to evaluate the cutting force. In high-speed, high-efficiency machining, however, the machine does not always execute movements as instructed by the NC data and the predicted cutting force does not always agree with the actual cutting forces. In this study, therefore, we developed an off-line system in which the motion information of each axis of an actual machine is acquired from a computer numerical control (CNC) controller, and is then used to predict the cutting force. The effects of using the proposed method are described in this article.


2013 ◽  
Vol 416-417 ◽  
pp. 796-799
Author(s):  
Hong Cai Yang ◽  
Ming Qing Wu

the development of numerical control technology changes with each new day, the article expounds the nc machine tools with complex shape parts of high precision requirements for rapid development, widely used in conventional parts processing, complex shape parts processing. Nc machine tools with the aid of microelectronics and computer technology rapid progress, is toward high precision, multi-function, high speed, high efficiency, composite processing functions, such as intelligent direction, our country numerical control system in the technology has already become more and more mature, in the major key technologies, has reached the foreign advanced level.


2011 ◽  
Vol 141 ◽  
pp. 460-464
Author(s):  
Wei Zhao ◽  
Tedros Alem Hadush ◽  
Qiong Yi He

Research on the post-processing algorithm with the DMC75VLinear 5-axis machining center and Heidenhain iTNC530 numerical control system. The formulae about angles B and C are proposed combined with the instruction of M128.The NC codes gotten from this method had been proved in the DMC75VLinea machine, so the post-processing algorithm is tested correctly and reliably.


2019 ◽  
Vol 9 (2) ◽  
pp. 138-143
Author(s):  
Tianyun Li ◽  
Xiling Dai ◽  
Yichen Li ◽  
Guozheng Huang ◽  
Jianguo Cao

Background:Stenoloma chusanum (L.) Ching is a Chinese traditional medicinal fern with high total flavonoid and total phenolic content. Traditionally, phenolic compounds were separated by using column chromatography, which is relatively inefficient. </P><P> Objective: This study aims to use an efficient method to separate natural products from S. chusanum by Medium-Pressure Liquid Chromatography (MPLC) and High-Speed Counter-Current Chromatography (HSCCC).Methods:In the present research, firstly, a sample (2.5 g) from the dichloromethane extract of S. chusanum was separated by MPLC. Next, fraction P5 was purified by HSCCC with a two-phase solvent system composed of hexane-ethyl acetate-methanol-water (HEMWat) at a volume ratio of 2:4:1:4 (v/v/v/v). </P><P> Result: Four phenolic acids were obtained and their structures were identified by means of NMR and ESI-mass analysis. They were identified as: 1) protocatechuic acid (34 mg, purity 90.1%), 2) syringic acid (66 mg, purity 99.0%), 3) p-hydroxybenzoic acid (5 mg, purity 91.2%) and 4) vanillic acid (6 mg, purity 99.3%).Conclusion:The combination of MPLC and HSCCC is a high-efficiency separation method for natural products. This is the first report with regard to the separation of four phenolic acids in one step by MPLC and HSCCC from S. chusanum (L.) Ching.


Author(s):  
Yudong Bao ◽  
Linkai Wu ◽  
Yanling Zhao ◽  
Chengyi Pan

Background:: Angular contact ball bearings are the most popular bearing type used in the high speed spindle for machining centers, The performance of the bearing directly affects the machining efficiency of the machine tool, Obtaining a higher value is the direction of its research and development. Objective:: By analyzing the research achievements and patents of electric spindle angular contact bearings, summarizing the development trend provides a reference for the development of electric spindle bearings. Methods:: Through the analysis of the relevant technology of the electric spindle angular contact ball bearing, the advantages and disadvantages of the angular contact ball bearing are introduced, and the research results are combined with the patent analysis. Results:: With the rapid development of high-speed cutting and numerical control technology and the needs of practical applications, the spindle requires higher and higher speeds for bearings. In order to meet the requirements of use, it is necessary to improve the bearing performance by optimizing the structure size and improving the lubrication conditions. Meanwhile, reasonable processing and assembly methods will also have a beneficial effect on bearing performance. Conclusion:: With the continuous deepening of bearing technology research and the use of new structures and ceramic materials has made the bearing's limit speed repeatedly reach new highs. The future development trend of high-speed bearings for electric spindles is environmental protection, intelligence, high speed, high precision and long life.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3357-3365 ◽  
Author(s):  
Shaohua Dong ◽  
Qing Zhang ◽  
Guangtao Cao ◽  
Jincheng Ni ◽  
Ting Shi ◽  
...  

AbstractPlasmons, as emerging optical diffraction-unlimited information carriers, promise the high-capacity, high-speed, and integrated photonic chips. The on-chip precise manipulations of plasmon in an arbitrary platform, whether two-dimensional (2D) or one-dimensional (1D), appears demanding but non-trivial. Here, we proposed a meta-wall, consisting of specifically designed meta-atoms, that allows the high-efficiency transformation of propagating plasmon polaritons from 2D platforms to 1D plasmonic waveguides, forming the trans-dimensional plasmonic routers. The mechanism to compensate the momentum transformation in the router can be traced via a local dynamic phase gradient of the meta-atom and reciprocal lattice vector. To demonstrate such a scheme, a directional router based on phase-gradient meta-wall is designed to couple 2D SPP to a 1D plasmonic waveguide, while a unidirectional router based on grating metawall is designed to route 2D SPP to the arbitrarily desired direction along the 1D plasmonic waveguide by changing the incident angle of 2D SPP. The on-chip routers of trans-dimensional SPP demonstrated here provide a flexible tool to manipulate propagation of surface plasmon polaritons (SPPs) and may pave the way for designing integrated plasmonic network and devices.


2012 ◽  
Vol 487 ◽  
pp. 203-207
Author(s):  
Gong Xue Zhang ◽  
Xiao Kai Shen

Purpose, with the application of workbench finite element analysis software, get the analysis results of DVG 850 high-speed vertical machining center via the modal analysis and harmonic response analysis. Use the calculation results for reference, put forward the improved method, and prove the credibility of the simulation analysis by testing DVG 850 prototype.


Sign in / Sign up

Export Citation Format

Share Document