Effect of Metal Catalysts Type and Annealing Time on the Growth of Zinc Oxide Nanostructures by Thermal Vapor Deposition Method

2014 ◽  
Vol 1024 ◽  
pp. 60-63
Author(s):  
Aimi Bazilah Rosli ◽  
Khairul Aimi Yusof ◽  
Sukreen Hana Herman ◽  
Muhammad Hazmi Johari ◽  
Shafinaz Sobihana Shariffudin ◽  
...  

This paper reports the results of zinc oxide (ZnO) nanostructure growth on different types of metal catalysts, namely gold and platinum, and also the effect of annealing time of the metal catalysts prior to the deposition of ZnO nanostructures. The metal catalysts layers with 15 nm thickness were deposited on glass substrates by sputter coater and then annealed in air ambient for 15 and 30 min at 500 °C. ZnO nanostructure was then deposited on the metal catalysts by thermal chemical vapour deposition (TCVD) method. We found that the Au catalyst morphologies varied with the annealing time, and the growth morphology of the ZnO followed the morphology of the Au catalyst. The morphology of the metal catalysts and ZnO nanostructures were characterized using field emission scanning electron microscopy (FESEM). The grown ZnO nanostructures were tested for their ability for extended gate field effect transistor (EGFET) sensor application. The samples were attached to the gate of an NFET and were dipped in acid and alkali buffer solutions while the gate voltage was measured. We found that the extended gate gave different voltage in buffer solutions with different pH which indicated that the samples can act as the extended gate of an EGFET sensor.

Author(s):  
W. H. Khoo ◽  
S. M. Sultan ◽  
M. Z. Sahdan

Zinc Oxide nanostructures thin films have been deposited on glass substrates by using chemical vapour deposition technique at 1000°C assisted by gas blocker. Glass substrates was sputtered by ~5nm of gold to form a catalyst layer on top of glass. Different gas flow rates of 0.05, 0.10, 0.20, 0.40 L/min were used in the deposition. After the deposition, the layer was annealed at temperatures of 500°C for 1 hours under atmospheric pressure. The surface morphologies of ZnO thin film were investigated field emission scanning electron microscope (FESEM). X-ray diffraction (XRD) results confirm the presence of ZnO layer with high peak of (002) crystal orientation and shows improvement after annealing. The mechanism of ZnO nanostructures formation will be discussed in this paper


2019 ◽  
Vol 17 (42) ◽  
pp. 108-124
Author(s):  
Ibrahim Abdulkareem Ali

        In this study, Zinc oxide nanostructures were synthesized via a hydrothermal method by using zinc nitrate hexahydrate and sodium hydroxide as a precursor. Three different annealing temperatures were used to study their effect on ZnO NSs properties. The synthesized nanostructure was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Atomic force microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). Their optical properties were studied by using UV -visible spectroscopy. The XRD analysis confirms that all ZnO nanostructures have the hexagonal wurtzite structure with average crystallite size within the range of (30.59 - 34.52) nm. The crystallite size increased due to the incensement of annealing temperature. FESEM analysis indicates that ZnO has hexagonal shape of cylindrical pores, plate-like nanocrystals and Nanorods. AFM analysis shows that the average surface roughness of ZnO Nanostructures increases from 3.96 to 19.1 nm with the increase of annealing temperature. The FTIR peaks indicate successful preparation of ZnO Nanostructures. The FTIR method was used to analyses the chemical bonds which conformed the present of the Zn-O group in the region between (400-500) cm-1. The UV-visible showed a red shift in the absorption spectra related to the shift in the energy gap related to increase in the particle size.  the band gap energy has been calculated from the optical absorption spectra. The annealing process has been fond more effective on the value of energy gap. As the annealing temperature increases, the value of energy gap, increases as well; from (3.12to 3.22) eV. The prepared Nanostructure is used for antibacterial property. It shows strong antibacterial activity against S. aureus and P.aeuruginosa bacteria by the agar disc diffusion method. The white precipitate of ZnO NSs has superior antibacterial activity on gram-positive (S. aureus) than the gram-negative (P.aeuruginosa) bacteria.


2019 ◽  
Vol 287 ◽  
pp. 75-79 ◽  
Author(s):  
Onkar Mangla ◽  
Savita Roy

In the present work, extremely non-equilibrium, high temperature and high density argon plasma is used for producing ions from pellet of zinc oxide (ZnO) fitted on top of anode. These ions along with energetic argon ions move vertically upward in a fountain like structure in post focus phase of plasma dynamics and material ions get deposited on the glass substrates placed at 4.0 cm from anode top. This process of production of material ions from ZnO pellet leads to nucleation and nanostructures formation with one and two bursts of focused plasma. The surface morphology studied using scanning electron microscopy shows the formation of nanostructures with mean size about 8 nm. The structural properties of nanostructures in X-ray diffraction pattern show [100] and [002] planes of hexagonal ZnO. Photoluminescence studies show peaks related to defect transitions. The band-gap of nanostructures found from Tauc plot is smaller than that of the bulk ZnO. The resultant morphological, structural and optical properties of nanostructures suggest the possible applications in visible optoelectronic devices.


2019 ◽  
Vol 294 ◽  
pp. 36-41
Author(s):  
Rolen Brian P. Rivera ◽  
Melchor J. Potestas ◽  
Ma. Reina Suzette B. Madamba ◽  
Rey Y. Capangpangan ◽  
Bernabe L. Linog ◽  
...  

We report on antibacterial activities of Zinc oxide (ZnO) with different structures. Fast furrier transform infrared spectroscopy ZnO nanostructures showed peaks in the range between 450–600 cm-1 indicating the successful growth through the presence of Zn-O stretching. On the other hand, impurities such as zinc complexes might be present due to the appearance of peaks at 1110 cm-1, 1390 cm-1 and 1506 cm-1. Furthermore, SEM images revealed that nanorods and sea-urchin like nanostructures are present in the produced ZnO nanostructures. Nanorods exhibit a better antibacterial response than the sea-urchin like structure. The change in structural morphology along with its purity has greatly influenced the area of bacterial inhibition zone during antibacterial testing.


2011 ◽  
Vol 364 ◽  
pp. 45-49 ◽  
Author(s):  
Azlinda Ab Azlinda ◽  
Zuraida Khusaimi ◽  
Saifollah Abdullah ◽  
Mohamad Rusop

Zinc oxide (ZnO) nanostructures prepared by immersion method were successfully grown on gold-seeded silicon substrate using Zinc nitrate hexahydrate (Zn (NO3)2.6H2O) as a precursor, separately stabilized with non-toxic urea (CH4N2O) and hexamethylene tetraamine (HMTA). The effect of changing the stabilizer of ZnO solution on the crystal structure, morphology and photoluminescence properties of the resultant ZnO is investigated. X-ray diffraction of the synthesized ZnO shows hexagonal zincite structure. The morphology of the ZnO was characterized using Field Emission Scanning Electron Microscope (FESEM). The growth of ZnO using urea as stabilizer shows clusters of ZnO nanoflower with serrated broad petals were interestingly formed. ZnO in HMTA showed growth of nanorods. The structures has high surface area, is a potential metal oxide nanostructures to be develop for optoelectronic devices and chemical sensors. The formation of ZnO nanostructures is found to be significantly affected by the stabilizer.


2011 ◽  
Vol 312-315 ◽  
pp. 1126-1131
Author(s):  
Mohamad Hafiz Mamat ◽  
Zuraida Khusaimi ◽  
Mohamad Mahmood Rusop

Zinc oxide (ZnO) nanostructures with different kind of morphologies were synthesized on glass substrates via the hydrothermal aqueous chemical growth method utilizing c-axis oriented ZnO thin film as seeded catalyst. By preparing ZnO thin film at different molar concentrations between 0.2~1.0 M, oval shaped ZnO nanostructures mixed with ZnO nanowires and rod shaped ZnO nanostructures mixed with ZnO nanowires were produced after immersion process into 0.0002 M zinc nitrate solution for 24 hour. The XRD spectra show synthesized ZnO nanostructures were ZnO hexagonal wurtzite crystalline. The photoluminescence (PL) measurement indicates the luminescences of the samples were depending on the shapes of ZnO nanostructure.


2015 ◽  
Vol 1109 ◽  
pp. 593-597
Author(s):  
M.F. Nasir ◽  
Mohd Hannas ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

This project has been focused on the electrical and optical properties on the effect of Indium doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different In dopant concentrations at 1 at%, 1.5 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 oC. In doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and UV-Vis-NIR spectrophotometer for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% In doping concentration which is 8.27× 103Ωcm-1The absorption coefficient spectrum obtained from UV-Vis-NIR spectrophotometer measurement shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.


2015 ◽  
Vol 804 ◽  
pp. 30-33
Author(s):  
Buppachat Toboonsung

Zinc oxide nanostructures were synthesized by an electrochemical dissolution and deposition process. The zinc plates were immerged in deionized water and used as two electrodes. The process was operated by applying the electric field of 10, 12.5, 25 and 50 V/cm, the constant voltage of 10 V and varied the temperatures from room temperature to 70 °C during 1 h. It was found that the electric field and temperature of electrolyte solution had affected to morphologies of ZnO NSs and were grown in forms of nanoflakes, nanoparticles and nanorods.


2018 ◽  
Vol 2 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Gajanan Kale ◽  
Sudhir Arbuj ◽  
Ujjwala Kawade ◽  
Sunit Rane ◽  
Jalindar Ambekar ◽  
...  

A novel paper-mediated template technique for the synthesis of N-ZnO nanostructures.


2009 ◽  
Vol 50 (3) ◽  
pp. 395-406
Author(s):  
JADE R. MACKAY ◽  
STEPHEN P. WHITE ◽  
SHAUN C. HENDY

AbstractZinc oxide is known to produce a wide variety of nanostructures that show promise for a number of applications. The use of electrochemical deposition techniques for growing ZnO nanostructures can allow tight control of the morphology of ZnO through the wide range of deposition parameters available. Here we model the growth of the rods under typical electrochemical conditions, using the Nernst–Planck equations in two dimensions to predict the growth rate and morphology of the nanostructures as a function of time. Generally good quantitative and qualitative agreement is found between the model predictions and recent experimental results.


Sign in / Sign up

Export Citation Format

Share Document