Rheological Property and Durability of High Strength Concrete Using Zeolite Powder and Microsphere

2014 ◽  
Vol 1030-1032 ◽  
pp. 1003-1009
Author(s):  
Yu Xin Gao ◽  
Jia Chao Lin ◽  
Bao Jun Cheng ◽  
Xiong Wu ◽  
Yuan Peng ◽  
...  

The rheological property of fresh high-strength concrete (HSC) and mechanical properties, self-shrinkage and resistance to chloride ion permeability of hydrated HSC were studied on the basis of the closest packing theory. Results showed that the packing density of composite powder was the highest when the content of microsphere was 30.0%; when the content of zeolite powder added to concrete varied from 0.0% to 4.0%, the rheological and discontinuous property of concrete would be improved and its viscosity would be increased; meanwhile, compared to the standard concrete, the self-shrinkage of concrete with 2.0% zeolite powder at 1d, 3d, 7d and 28d was decreased by 77.1%, 49.6%, 44.0% and 38.1% respectively; finally, the resistance to chloride ion permeability of hydrated HSC with zeolite powder was improved with a result of 18.5% reduction of electric flux at 28d.

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 932
Author(s):  
Huu-Bang Tran ◽  
Van-Bach Le ◽  
Vu To-Anh Phan

This paper presents the experimental results of the production of Nano-SiO2 (NS) from rice husk ash (RHA) and the engineering properties of High Strength Concrete (HSC) containing various NS contents. Firstly, the mesoporous silica nanoparticles were effectively modulated from RHA using NaOH solution, and subsequently precipitated with HCl solution until the pH value reached 3. The optimum synthesis for the manufacture of SiO2 nanoparticles in the weight ratio of RHA/NaOH was 1:2.4, and the product was calcined at 550 °C for 2 h. The EDX, XRD, SEM, TEM, FT-IR, and BET techniques were used to characterize the NS products. Results revealed that the characteristics of the obtained NS were satisfactory for civil engineering materials. Secondly, the HSC was manufactured with the aforementioned NS contents. NS particles were added to HSC at various replacements of 0, 0.5, 1.0, 1.5, 2.0, and 2.5% by the mass of the binder. The water-to-binder ratio was remained at 0.3 for all mixes. The specimens were cured for 3, 7, 28, 25 days under 25 ± 2 °C and a relative humidity of 95% before testing compressive and flexural strengths. Chloride ion permeability was investigated at 28 and 56 days. Results indicated that the addition of NS dramatically enhanced compressive strength, flexural strength, chloride ion resistance, and reduced chloride ion permeability compared to control concrete. The optimal NS content was found at 1.5%, which yielded the highest strength and lowest chloride ion permeability. Next, the development of flexural and compressive strengths with an age curing of 3–28 days can be analytically described by a logarithmic equation with R2 ≥ 0.74. The ACI code was used, and the compressive strength at t-day was determined based on 28 days with R2 ≥ 0.95. The study is expected to solve the redundancy of waste RHA in southern Vietnam by making RHA a helpful additive when producing high-strength concrete and contributing meaningfully to a sustainable environment.


2009 ◽  
Vol 405-406 ◽  
pp. 219-225 ◽  
Author(s):  
Ji Liang Wang ◽  
Kai Min Niu ◽  
Zhi Feng Yang ◽  
Ming Kai Zhou ◽  
Li Qun Sun ◽  
...  

Effects of fly ash and ground granulated blast-furnace slag (GGBFS) on workability, strength, volume stability and durability of HSC are investigated. Results show that fly ash and GGBFS can improve the workability, increase the later strength of high strength concrete (HSC) remarkably, and reduce the brittleness. In addition, the ameliorative effect of GGBFS on HSC brittleness is more remarkable. With the increase of fly ash and GGBFS, the early elastic modulus of HSC reduces. The elastic modulus is similar to the controlled sample when the load is applied after 60d curing. The fly ash and GGBFS can improve HSC’s resistance to chloride ion penetration significantly. However, the effects of fly ash and GGBFS on freezing-hawing resistance of HSC are not obvious. Besides, the fly ash will reduce freezing-hawing resistance of HSC only when the content of mineral powder is up to 36%.


2009 ◽  
Vol 405-406 ◽  
pp. 19-23
Author(s):  
Da Li Zhang ◽  
Yuan Wang ◽  
Cui Hong Chen

Durability of C100 concrete in Shenyang WAN XIN Hotel engineering including long-term mechanical properties, dynamic modulus of elasticity, and chloride ion resistance was tested and analyzed. Test results appeared that C100 concrete had very good density and extremely good durability. Simultaneously we suggest improving the evaluation method to test the durability of super-high strength concrete in order to enhance the evaluation level effectively. It will provide one according of durability to apply super-high strength concrete.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yan Li ◽  
Bing Li ◽  
Lian-ying Zhang ◽  
Chao Ma ◽  
Jiong Zhu ◽  
...  

In this study, the porosities of C60 high-strength concrete after 0, 30, 60, and 90 freeze-thaw cycles determined via the water retention method are 1.30%, 3.65%, 5.14%, and 7.34%, respectively. Furthermore, a mathematical model of porosity varying with the number of freeze-thaw cycles is established. Using an artificial environment simulation experimental system and the natural diffusion method, the chloride diffusion law of C60 high-strength concrete after 0, 30, 60, and 90 freeze-thaw cycles is obtained. The corresponding diffusion coefficients are calculated based on the experimental results and Fick’s law, where 0.3431 × 10−12, 0.5288 × 10−12, and 0.6712 × 10−12, and 0.8930 × 10−12 m2/s are obtained, respectively, and a mathematical model of diffusion coefficient with freeze-thawing is established. Transport control equations comprising solution flow and solute migration control equations are established for chloride ions in concrete after freeze-thawing cycles. The equations consider the effects of freeze-thawing, solution pressure, solution concentration, solution density, convection, mechanical dispersion, and chemisorption on chloride ion transport in concrete. Using COMSOL numerical software, the transport control equations for chloride ions are solved using a real concrete numerical model, and the chloride ion corrosion process in concrete after freeze-thaw cycles is simulated. The simulation results are consistent with the experimental values.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 348
Author(s):  
Yuqi Zhou ◽  
Jianwei Sun ◽  
Zengqi Zhang

Massive high-strength concrete structures tend to have a high risk of cracking. Ground slag powder (GSP), a sustainable and green industrial waste, is suitable for high-strength concrete. We carried out an experimental study of the effects of GSP with a specific surface area of 659 m2/kg on the hydration, pore structure, compressive strength and chloride ion penetrability resistance of high-strength concrete. Results show that adding 25% GSP increases the adiabatic temperature rise of high-strength concrete, whereas adding 45% GSP decreases the initial temperature rise. Incorporating GSP refines the pore structure to the greatest extent and improves the compressive strength and chloride ion penetrability resistance of high-strength concrete, which is more obvious under early temperature-matching curing conditions. Increasing curing temperature has a more obvious impact on the pozzolanic reaction of GSP than cement hydration. From a comprehensive perspective, GSP has potential applications in the cleaner production of green high-strength concrete.


Sign in / Sign up

Export Citation Format

Share Document