Preparation and Characterization of Different Metal Modified BaTiO3 Powders

2010 ◽  
Vol 105-106 ◽  
pp. 342-344 ◽  
Author(s):  
J.L. Li ◽  
S.E. Hao ◽  
C.Y. Wang ◽  
F.X. Kong ◽  
W. Wang

BaTiO3 powders modified with Sm, La, Cu, Al, Zn were prepared by solid doping and gaseous penetration method and their components, structure, superficies and electric properties were characterized. The results show that the resistivity of the modified powders is decreased after both solid doping and gaseous penetration, and it is more obviously after gaseous penetration. Among all the metals being discussed, Sm has the most significant influence on decreasing the resistivity of modified powders. The room temperature resistivity of Sm-penetrated BaTiO3 powders is the lowest, which decreases from 8.3×1010Ω•m (pure BaTiO3 powders) to 1.65×105Ω•m. SEM investigation illustrates that the powders are in uniform grain size. No apparent pores and small grains are found. XRD analysis indicates that the doping process only leads to the changes of the peak width and intensity without new phases appearing, but characteristic peaks of Sm2TiO5, SmTiO3, and Ba10.37Sm17.08Ti36O108 can be detected after gaseous penetrated, which leads to the decrease of the resistivity of modified BaTiO3 powders.

2009 ◽  
Vol 615-617 ◽  
pp. 19-22 ◽  
Author(s):  
Katarzyna Racka ◽  
Emil Tymicki ◽  
Marcin Raczkiewicz ◽  
Krzysztof Grasza ◽  
Michal Kozubal ◽  
...  

n- and p-type 6H-SiC single crystals grown by PVT method using different charge materials – poly-SiC sinter or fresh SiC powder – have been studied. An open or closed seed backside during the growth processes have been applied. In the former, a distinct decrease backside etching of the seed was observed. Crystals have been extensively characterized with respect to their purity, quality and electrical properties using complex experimental methods. For the n-type boule an axially and radially homogeneous resistivity ~0.11 cm at 300 K was observed. Electrical properties of the p-type crystal, i.e., high room-temperature resistivity of 239 cm, were affected by compensation effects between residual donors (nitrogen and oxygen) and acceptors (mainly boron).


2014 ◽  
Vol 1015 ◽  
pp. 425-429
Author(s):  
Xu Xin Cheng ◽  
Hai Ning Cui ◽  
Dong Xiang Zhou ◽  
Qiu Yun Fu

We investigated the influence of the Sm-doped contentration on the electrical properties and PTC effect of Ba-excess BaTiO3Based Ceramics, which were fired at 1300 °C for 30 min in a reducing atmosphere and then reoxidized at 850 °C for 1 h. The results showed that the donor dopant affected PTC characteristics and the electrical properties of the BSMT ceramics, whose room temperature resistivity first decreased and then increased with an increase in the Sm3+-doped content across the range from 0.1 to 0.5 mol%. The BSMT specimens exhibited a remarkable PTC effect, with a resistance jump greater by 2.7 orders of magnitude, along with a low room temperature resistivity of 128.6 Ω∙cm at the donor-doped content of 0.3 mol%. The influence of the donor dopant on the grain size of the as-fired samples has been also investigated.


2014 ◽  
Vol 893 ◽  
pp. 69-74
Author(s):  
Johar Banjuraizah ◽  
Mohd. Haziq Che Ani ◽  
A.R. Mohamed

Transition metal oxide-doped CCTO (CaCu3Ti4O12) ceramics were prepared by a conventional solgel synthesis method and the effects of pure CCTO and CCTO doped with Mn, Fe, Co, Ni to the crystal structure, microstructures and dielectrical properties of samples were investigated. The phase composition and microstructure were studied by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD analysis reveals that all samples exhibited multiphases with the pseudo-perovskite cubic CCTO phase with space group Im-3 as the main phase in undoped and doped CCTO samples. Peaks of monoclinic CuO and peroveskite CaTiO3 could also be seen in all samples which indicate that solid solution of CuO in CaTiO3 lattice was incomplete.SEM results show that doping effectively enhanced densification. SEM micrographs also suggested that the morphologies of doped CCTO ceramics had showed a matrix consisting of large grains wherein the small grains were embedded between the larger grains. Dielectric properties of pure and doped CCTO were investigated in a broad frequency range of the dielectric constant reached a value as high as εr = 29.4 at room temperature for CCTO doped with Ni at frequency (1000 Hz). Besides the sintering conditions, the microstructure and the dielectric properties of the CCTO are strongly influenced by type of doping elements.


2011 ◽  
Vol 25 (08) ◽  
pp. 1149-1160 ◽  
Author(s):  
M. N. AKHTAR ◽  
M. U. ISLAM ◽  
SHAHIDA B. NIAZI ◽  
M. U. RANA

W-type hexagonal ferrites having the formula BaCo 2-x Mg x Fe 16 O 27 with x = 0, 0.4, 0.8, 1.2, 1.6, 2.0 were synthesized by the chemical coprecipitation method. XRD analysis shows that the structure of all the compositions is W-type hexagonal ferrite. The c/a ratio varies from 5.48 to 5.52, consistent with the standard values. It was observed that the bulk density and X-ray density decrease whereas porosity increases with increasing concentration of Mg 2+. Room temperature resistivity increases, from 103 to 107 (Ω cm) by increasing the concentration of Mg 2+, due to an increased number of grain boundaries. The remanence and saturation magnetization decrease with increasing Mg 2+ content while coercivity increases as the Mg 2+ increases according to the relation Hc ∝ 1/r. The measured coercivity values are suitable for use in high frequency applications such as microwave absorber materials.


1984 ◽  
Vol 37 ◽  
Author(s):  
L. H. Greene ◽  
W. L. Feldmann ◽  
J. M. Rowell ◽  
B. Batlogg ◽  
R. Hull ◽  
...  

AbstractWe report the observation of a higher degree of preferred crystalline orientation in Nb/rare earth superlattices for modulation wavelengths in the range of 200 Å to 500 Å than that exhibited by single component films. All films and multilayers are sputter deposited onto room temperature sapphire substrates. Electronic transport measurements also show that the residual resistance ratio is higher and the room temperature resistivity is lower than for multilayers of either greater or lower periodicities. Transmission electron micrographs (TEM) showing excellent layering, grain size comparable to the layer thickness, and evidence of some degree of epitaxy are presented.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Taoreed O. Owolabi ◽  
Kabiru O. Akande ◽  
Sunday O. Olatunji

Doping and fabrication conditions bring about disorder in MgB2superconductor and further influence its room temperature resistivity as well as its superconducting transition temperature (TC). Existence of a model that directly estimatesTCof any doped MgB2superconductor from the room temperature resistivity would have immense significance since room temperature resistivity is easily measured using conventional resistivity measuring instrument and the experimental measurement ofTCwastes valuable resources and is confined to low temperature regime. This work develops a model, superconducting transition temperature estimator (STTE), that directly estimatesTCof disordered MgB2superconductors using room temperature resistivity as input to the model. STTE was developed through training and testing support vector regression (SVR) with ten experimental values of room temperature resistivity and their correspondingTCusing the best performance parameters obtained through test-set cross validation optimization technique. The developed STTE was used to estimateTCof different disordered MgB2superconductors and the obtained results show excellent agreement with the reported experimental data. STTE can therefore be incorporated into resistivity measuring instruments for quick and direct estimation ofTCof disordered MgB2superconductors with high degree of accuracy.


2006 ◽  
Vol 20 (02) ◽  
pp. 217-231 ◽  
Author(s):  
MUHAMMAD MAQBOOL ◽  
TAHIRZEB KHAN

Thin films of pure silver were deposited on glass substrate by thermal evaporation process at room temperature. Surface characterization of the films was performed using X-ray diffraction (XRD) and atomic force microscopy (AFM). Thickness of the films varied between 20 nm and 72.8 nm. XRD analysis provided a sharp peak at 38.75° from silver. These results indicated that the films deposited on glass substrates at room temperature are crystalline. Three-dimension and top view pictures of the films were obtained by AFM to study the grain size and its dependency on various factors. Average grain size increased with the thickness of the deposited films. A minimum grain size of 8 nm was obtained for 20 nm thick films, reaching 41.9 nm when the film size reaches 60 nm. Grain size was calculated from the information provided by the XRD spectrum and averaging method. We could not find any sequential variation in the grain size with the growth rate.


2007 ◽  
Vol 280-283 ◽  
pp. 341-344
Author(s):  
Xiao Lei Li ◽  
Yuan Fang Qu ◽  
Wei Bing Ma ◽  
Zhan Shen Zheng

Ni/BaTiO3 composite was prepared by decomposition of NiC2O4·2H2O/BaTiO3 precursor, which was prepared by precipitating of nickel in the form of oxalate into the BaTiO3 slurry. The composite must be sintered in reducing atmosphere. Otherwise NTC effect would be introduced. The prepared composite almost had no PTC effect. But PTC effect of the Ni/BaTiO3 composite can be effectively renewed by heat-treatment in air. Under a proper composition and method, the composite shows low room-temperature resistivity (ρRT=6.0 Ω·cm) and obvious PTC effect (ρmax/ρmin=102).


2014 ◽  
Vol 900 ◽  
pp. 134-137
Author(s):  
Xu Xin Cheng ◽  
Dong Xiang Zhou ◽  
Qi Jun Xiao ◽  
Zhao Xiong Zhao

The PTCR characteristics of (Ba1-xSmx)TiO3(BSMT) with different donor-doped concentration (x) sintered in a reducing atmosphere and reoxidized in air are investigated. The results reveal that the room temperature resistivity (ρRT) of the semiconducting BSMT ceramics first decreases and then increases with increasing of thexvalues, especially whenxis 0.004, the semiconducting BSMT ceramics reoxidized at 850oC for 1 h after sintering at 1300 °C for 30 min in a reducing atmosphere achieve a lower room temperature resisitivity of 82.6 Ωcm. in addition, the doped 0.1 mol% Sm3+BSMT samples fired at 1300 °C for 30 min in air exhibit remarkable PTCR effect with a resistance jumping ratio of 3.4 orders magnitude; moreover, a lower ρRTof the BSMT specimens sintered in a reducing atmosphere is obtained.


Sign in / Sign up

Export Citation Format

Share Document