Optimization of Preparing Technology of Magnetic Carboxymethylchitosan Microspheres Molecular-Imprinted by 6-ethoxydihydrosanguinarine Using Response Surface Methodology

2015 ◽  
Vol 1090 ◽  
pp. 142-147
Author(s):  
Ming Zhong ◽  
Rui Qing Long

In the present study, the response surface methodology (RSM) based on central composite design (CCD) was employed to optimize the preparation process of magnetic carboxymethylchitosan microspheres molecular-imprinted by 6-ethoxydihydrosanguinarine. The optimum parameters were as follows: CMCS concentration,3.24% ;CMCS/EtOSA ratio, 37.79 (g/g) and oil/water ratio, 2.76 (v/v).The adsorption rate from the optimized model was 39.34 (mg/g). Under the optimized conditions, the adsorption rate for the verifying experiments was well matches with the predicted value.

2018 ◽  
Vol 17 (4) ◽  
pp. 349-354
Author(s):  
Qadir Rahman ◽  
Anwar Farooq ◽  
Amjad Gilani Mazhar ◽  
Nadeem Yaqoob Muhammad ◽  
Ahmad Mukhtar

This study investigates the effect of enzyme formulations (Zympex-014, Kemzyme dry-plus and Natuzyme) on recovery of phenolics from Peganum hermala (harmal) leaves, under optimized conditions using response surface methodology. As compared to the other enzyme complexes, the yield (34 g/100g) obtained through Zympex-014-assisted extraction was higher under optimized conditions such as time (75 min), temperature (70°C), pH (6.5) and enzyme concentration (5 g/100 g) using central composite design (CCD). Effectiveness of Zympex-014 towards hydrolysis of P. hermala leaves cell wall was examined by analyzing the control and enzyme-treated leave residues using scanning electron microscope (SEM). GC/MS characterization authenticated the presence of quercetin (1.44), gallic acid (0.23), caffeic acid (0.04), cinnamic acid (0.05), m-coumaric acid (0.23) and p-coumaric acid (0.37 μg/g) as the potent phenolics in Zympex-014 based extract. It can be concluded from the findings of the current work that pre-treatment of P. hermala leaves with Zympex-014 significantly enhanced the recovery of phenolics that supports its potential uses in the nutra-pharamaceutical industry.


2014 ◽  
Vol 875-877 ◽  
pp. 1637-1641
Author(s):  
Arrisa Sopajarn ◽  
Chayanoot Sangwichien

The purpose of this work is to develop a pretreatment process of lingo-cellulosic ethanol production from narrow leaves cattail (Typha angustifolia) by using alkali catalysis with the response surface methodology (RSM) as a central composite design (CCD). The first step, LiOH, NaOH, and KOH were used as catalytic alkali for preliminary test. Second, the suitable alkali from first step was selected to optimize of pretreatment condition of three independent variables (alkali concentration, temperature, and residence time) that varies at CCD five codes (-2, -1, 0, 1, 2). Sodium hydroxide (NaOH) is the proper alkali because it could increase cellulose more than KOH and nearby LiOH while it is cheapest. RSM result shows the optimized pretreatment condition based on cellulose increased which obtained from this study that is NaOH 5 % w/v at 100 °C and residence time for 120 min. Beside, this condition was analyzed using an ANOVA with a second order polynomial equation after eliminated non-significant terms. At the optimized conditions, cellulose increased, hemicellulose decreased and weight recovery were achieved 77.81%, 80.59, and 41.65%, respectively. Moreover, the model was reasonable to predict the response of strength with less than 5% error.


2021 ◽  
Vol 19 (6) ◽  
pp. 562-574
Author(s):  
Prakash Binnal ◽  
Rajashekhara S. ◽  
Jagadish Patil

Colour is one of most important properties of foods and beverages and is a basis for their identification and acceptability. Anthocyanin from red cabbage was extracted using 50 % ethanol. The extract was dealcoholized by Liquid Emlusion Membrane technology (LEM). Parafin oil was used as a solvent, lecithin was used as a surfactant and water as stripping medium. Response surface methodology (RSM) was used to design the experiments. A total of 30 experiments were conducted in accordance with central composite rotatable design. Design expert 8 was used to design the experiments. % extraction of alcohol in each case was determined. A suitable model was fitted to experimental data by regression analysis (R-square=0.93). Response surface plot were analysed and optimum parameters for dealcoholization were found to be speed=365.44 rpm, time=18.62 min, concentration of lecithin=2.84 %, feed to emulsion ratio=3.05. A maximum dealcoholisation of 18.63 % was observed under these conditions


2012 ◽  
Vol 554-556 ◽  
pp. 909-917 ◽  
Author(s):  
Wei Wen Huang ◽  
Wei Wang ◽  
Ji Lie Li ◽  
Zhong Hai Li

Response surface methodology was used to optimize the preparation technology of resistant starch (RS) production by raw cowpea bean starch. In the first optimization step, single factor experiments designed was used to evaluate the influence of RS yield. The RS yield were influenced significantly by some factors of preparation RS, including the starch concentration, autoclaving time, pullulanase dosage and enzymolysis temperature. The others in the investigation scope had no significant influence on the RS production. In the last step, four main factors were further optimized using Box-Behnken designs and response surface analysis. The optimized conditions in the process of preparation RS were starch concentration as 29%, autoclaving time as 38min, pullulanase dosage as 4.0PUN/g, enzymolysis temperature as 60°C. In our optimal conditions, rather good RS yield was 23.52±0.15% and repeatability of the preparation process was good which was valuable in further production.


2020 ◽  
Vol 5 (2) ◽  
pp. 30-44
Author(s):  
Nurhayati Yusof

Many researchers have focused chitosan as a source of potential bioactive material during the past few decades. However, chitosan has several drawbacks to be utilised in biological applications, including poor solubility under physiological conditions. Therefore, a new interest has recently emerged on partially hydrolysed chitosan, chitosan oligosaccharides (COS). In this study, degradation of chitosan was performed by Cellulase from Trichoderma reesei® 1.5L and Response Surface Methodology (RSM) were employed to optimize the hydrolysis temperature, pH, enzyme concentration and substrate concentration. Optimization of cellulase T. reesei® using central composite design (CCD) was to obtain optimum parameters and all the factors showed significant effects (p˂0.05). The maximum response, Celluclast® activity (1.268 U) was obtained by assaying the process at 49.79oC, pH 4.5, 3% (v/w) of enzyme concentration and 25% (w/v) concentration of chitosan for 24 hours.


2019 ◽  
Vol 09 ◽  
Author(s):  
Hossein Zaeri ◽  
Bahareh Kamyab Moghadas ◽  
Bijan Honarvar ◽  
Ali Shokuhi Rad

: In this research, the extraction of essential oil from Calotropis Procera with the family name of Asclepiadaceae, by supercritical carbon dioxide (CO2) solvent has been investigated in detail, and the yield and chemical profile of the extracts achieved by this method were compared with those resulted by the conventional Hydro distillation method. To optimize the process parameters of CO2 supercritical extraction (SCE) of the Calotropis Procera, the Response Surface Methodology (RSM) with central composite design (CCD) was employed. The effects of temperature, pressure, and extraction time on the oil yield are considered for investigation. Results showed that the data were sufficiently fitted into the second-order polynomial model. The extraction conditions, including pressure, temperature, and extraction time, were studied between 150-200 bar, 40-50 ºC, and 50-100 min, respectively. The optimal conditions are achieved as the temperature of 47.19ºC, the pressure of 172.2 bar, and time of 86 minutes with the retrieval rate of 31.39%.


2021 ◽  
Vol 13 (4) ◽  
pp. 2216
Author(s):  
Najeeha Mohd Apandi ◽  
Mimi Suliza Muhamad ◽  
Radin Maya Saphira Radin Mohamed ◽  
Norshuhaila Mohamed Sunar ◽  
Adel Al-Gheethi ◽  
...  

The present study aimed to optimize the production of Scenedesmus sp. biomass during the phycoremediation process. The biomass productivity was optimized using face centred central composite design (FCCCD) in response surface methodology (RSM) as a function of two independent variables that included wet market wastewater concentrations (A) with a range of 10% to 75% and aeration rate (B) with a range of 0.02 to 4.0 L/min. The results revealed that the highest biomass productivity (73 mg/L/d) and maximum growth rate (1.19 day−1) was achieved with the 64.26% of (A) and 3.08 L/min of (B). The GC-MS composition analysis of the biomass yield extract revealed that the major compounds are hexadecane (25%), glaucine (16.2%), and phytol (8.33%). The presence of these compounds suggests that WMW has the potential to be used as a production medium for Scenedesmus sp. Biomass, which has several applications in the pharmaceutical and chemical industry.


2012 ◽  
Vol 581-582 ◽  
pp. 819-822 ◽  
Author(s):  
Bin Meng ◽  
Jin Hui Peng

The corundum-mullite was toughened by in-situ synthesized mullite whiskers and the process parameters influencing the fracture toughness of corundum-mullite, such as sintering temperature, addition amount of AlF3 and V2O5, were optimized by means of response surface method. Corundum-mullite with fracture toughness of 9.44 MPa.m-1/2 could be obtained under the optimized conditions, i.e. sintering temperature of 1400°C, 4.8 wt.% of AlF3 and 5.8 wt.% of V2O5. The results showed that it was feasible to prepare corundum-mullite toughened by in-situ synthesized mullite whiskers by the optimized parameters. In addition, an accurate model based on response surface method was proposed to predict the experimental results.


Sign in / Sign up

Export Citation Format

Share Document