Optimization of the Preparation Technology of Resistant Starch of Cowpea Using Response Surface Methodology

2012 ◽  
Vol 554-556 ◽  
pp. 909-917 ◽  
Author(s):  
Wei Wen Huang ◽  
Wei Wang ◽  
Ji Lie Li ◽  
Zhong Hai Li

Response surface methodology was used to optimize the preparation technology of resistant starch (RS) production by raw cowpea bean starch. In the first optimization step, single factor experiments designed was used to evaluate the influence of RS yield. The RS yield were influenced significantly by some factors of preparation RS, including the starch concentration, autoclaving time, pullulanase dosage and enzymolysis temperature. The others in the investigation scope had no significant influence on the RS production. In the last step, four main factors were further optimized using Box-Behnken designs and response surface analysis. The optimized conditions in the process of preparation RS were starch concentration as 29%, autoclaving time as 38min, pullulanase dosage as 4.0PUN/g, enzymolysis temperature as 60°C. In our optimal conditions, rather good RS yield was 23.52±0.15% and repeatability of the preparation process was good which was valuable in further production.

Author(s):  
Snehal B. Bhandare ◽  
Kirti S. Laddha

Objective: To optimize the extraction parameters for determining the highest yield of Total Flavonoids from Gardenia gummifera gum resin.Methods: In the present study, response surface methodology (RSM) with three level Box Behenken design (BBD) was performed to optimize extraction parameters for total flavonoids. Solvent concentration(A), extraction time (B) and extraction temperature(C) were considered for single factor experiment.Results: The highest flavonoid concentration was obtained with acetone 45.00% v/v, time 101.46 min, temperature 41.57 °C. The average experimental TFC under optimal conditions was 161.14 mg/g which was in close agreement with the predicted value of 163.42 mg/g.Conclusion: RSM-BBD is successfully applied in optimizing extraction conditions for extraction of total flavonoids from G. gummifera gum resin.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 854
Author(s):  
Jichang Li ◽  
Rui Wang ◽  
Zunlai Sheng ◽  
Zhiyong Wu ◽  
Chunli Chen ◽  
...  

In this study, a simultaneous water extraction process for baicalin, wogonoside, and chlorogenic acid has been optimized. The effect of extraction temperature, extraction time, and liquid–solid ratio was scrutinized by single factor experiments and further analyzed by Box–Behnken design (BBD) approach using response surface methodology (RSM). The extraction yield of investigated compounds was determined by high performance liquid chromatography (HPLC). Single-factor experiments and response surface analysis results revealed that the optimized conditions are: Liquid to solid ratio 25:1 (mL/g), extraction temperature 93 °C, extraction time 2.4 h, and the extraction cycle two. Importantly, it has been noted that under the above conditions, concentrations of baicalin, wogonoside, and chlorogenic were 0.078, 0.031, and 0.013 mg/mL, respectively, and the overall desirability (OD) value was 0.76 which was higher than the non-optimized conditions and the deviation from the predicted OD value was only 2.44%. Conclusively, it has been suggested that the model was stable and feasible, and fit for extraction of baicalin, wogonoside, and chlorogenic acid from Scutellariae Radix and Lonicerae (L.) japonicae Flos.


2015 ◽  
Vol 1090 ◽  
pp. 142-147
Author(s):  
Ming Zhong ◽  
Rui Qing Long

In the present study, the response surface methodology (RSM) based on central composite design (CCD) was employed to optimize the preparation process of magnetic carboxymethylchitosan microspheres molecular-imprinted by 6-ethoxydihydrosanguinarine. The optimum parameters were as follows: CMCS concentration,3.24% ;CMCS/EtOSA ratio, 37.79 (g/g) and oil/water ratio, 2.76 (v/v).The adsorption rate from the optimized model was 39.34 (mg/g). Under the optimized conditions, the adsorption rate for the verifying experiments was well matches with the predicted value.


2011 ◽  
Vol 396-398 ◽  
pp. 1126-1131
Author(s):  
Yao Xuan Zhang ◽  
Lu Yao Zhang ◽  
Qiu Jie Zhang ◽  
Hou He Chen

The main factors affecting the drying process of RDX and the optimum drying conditions were investigated through single factor test and response surface methodology, the optimal drying conditions were gained. The results show that moisture content, vacuum, temperature are important factors in the drying process of RDX, the significance of main influencing factors is: temperature> vacuum> moisture content, the suggested drying condition is: 80°C for temperature, 0.05MPa for vacuum, 10% for moisture content.


2018 ◽  
Vol 17 (4) ◽  
pp. 349-354
Author(s):  
Qadir Rahman ◽  
Anwar Farooq ◽  
Amjad Gilani Mazhar ◽  
Nadeem Yaqoob Muhammad ◽  
Ahmad Mukhtar

This study investigates the effect of enzyme formulations (Zympex-014, Kemzyme dry-plus and Natuzyme) on recovery of phenolics from Peganum hermala (harmal) leaves, under optimized conditions using response surface methodology. As compared to the other enzyme complexes, the yield (34 g/100g) obtained through Zympex-014-assisted extraction was higher under optimized conditions such as time (75 min), temperature (70°C), pH (6.5) and enzyme concentration (5 g/100 g) using central composite design (CCD). Effectiveness of Zympex-014 towards hydrolysis of P. hermala leaves cell wall was examined by analyzing the control and enzyme-treated leave residues using scanning electron microscope (SEM). GC/MS characterization authenticated the presence of quercetin (1.44), gallic acid (0.23), caffeic acid (0.04), cinnamic acid (0.05), m-coumaric acid (0.23) and p-coumaric acid (0.37 μg/g) as the potent phenolics in Zympex-014 based extract. It can be concluded from the findings of the current work that pre-treatment of P. hermala leaves with Zympex-014 significantly enhanced the recovery of phenolics that supports its potential uses in the nutra-pharamaceutical industry.


2012 ◽  
Vol 581-582 ◽  
pp. 819-822 ◽  
Author(s):  
Bin Meng ◽  
Jin Hui Peng

The corundum-mullite was toughened by in-situ synthesized mullite whiskers and the process parameters influencing the fracture toughness of corundum-mullite, such as sintering temperature, addition amount of AlF3 and V2O5, were optimized by means of response surface method. Corundum-mullite with fracture toughness of 9.44 MPa.m-1/2 could be obtained under the optimized conditions, i.e. sintering temperature of 1400°C, 4.8 wt.% of AlF3 and 5.8 wt.% of V2O5. The results showed that it was feasible to prepare corundum-mullite toughened by in-situ synthesized mullite whiskers by the optimized parameters. In addition, an accurate model based on response surface method was proposed to predict the experimental results.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Yingpeng Tong ◽  
Yu Jiang ◽  
Dan Guo ◽  
Yongqiu Yan ◽  
Shiping Jiang ◽  
...  

Saffron, which has many kinds of biological activities, has been widely used in medicine, cosmetics, food, and other fields of health promotion industries. Crocins are the main component of saffron (Crocus sativus L.). At present, most of the extraction methods for crocins require long time or special instruments to complete the process and some of them are not suitable for industrial production at present. In this article, homogenate extraction technology which is a convenient and efficient method was developed for crocins extraction from saffron. Firstly, the influences of extraction voltage, extraction time, ethanol concentration, and temperature on crocins yield were studied by single factor experiments; and then response surface methodology (RSM) was used to optimize levels of four variables based on the result of single factor experiments. Results showed that the optimum extraction process conditions for crocins were as follows: extraction voltage, 110 V; ethanol concentration, 70%; extraction temperature, 57°C; and extraction time, 40 s. Based on these conditions, the extraction yield of crocins can reach 22.76% which is higher than ultrasonic extraction method. Therefore, homogenate extraction is an effective way to extract crocins from saffron with higher extraction yield and shorter extraction time.


2012 ◽  
Vol 550-553 ◽  
pp. 1866-1870
Author(s):  
Xiao Dan Tang ◽  
Hai Yang Hang ◽  
Shao Yan Wang ◽  
Jing Xiang Cong

Gypenosides III is a major bioactive component which is rich in Gynostemma pentaphyllum. For better utilization of the native resource, response surface methodology was used to optimize the extraction conditions of gypenosides III from G. pentaphyllum. The effects of three independent variables on the extraction yield of gypenosides III were investigated and the optimal conditions were evaluated by means of Box-Behnken design. The optimal conditions are as follows: ratio of ethanol to raw material 25, extraction temperature 58°C and ultrasonic time 25min. Under these conditions, the yield of gypenoside III is 1.216±0.05%, which is agreed closely with the predicted yield value.


2021 ◽  
Author(s):  
Yu Zhou ◽  
Yupan Yun ◽  
Xueyou Wen

Abstract This study primarily focused on how to effectively remove nitrate by catalytic denitrification through zero-valent iron (Fe0) and Pd-Ag catalyst. In order to get better catalytic performance, response surface methodology (RSM), instead of the single factor experiments and orthogonal tests, was firstly applied to optimize the condition parameters of the catalytic process. Results indicated that RSM is accurate and feasible for the condition optimization of catalytic denitrification. Better catalytic performance (71.6% N2 Selectivity) was obtained under the following conditions: 5.1 pH, 127 min reaction time, 3.2 mass ration (Pd: Ag), and 4.2 g/L Fe0, which was higher than the previous study designed by the single factor experiments (68.1%) and orthogonal tests (68.7%). However, under the optimal conditions, N2 selectivity showed a mild decrease (69.3%), when the real wastewater was used as the influent. Further study revealed that the cations (e.g., K+, Na+, Ca2+, Mg2+, and Al3+) and anions (e.g., Cl-, HCO3-, and SO42-) exist in wastewater may have distinctive influence on N2 selectivity. Finally, the reaction mechanism and kinetic model of catalytic denitrification were further studied.


Sign in / Sign up

Export Citation Format

Share Document