SERS-Modeling in Molecular Sensing

2015 ◽  
Vol 1109 ◽  
pp. 223-226
Author(s):  
Asing ◽  
Md Eaqub Ali ◽  
Sharifah Bee Abd Hamid

Surface enhanced Raman spectroscopy (SERS) is an ultrasensitive vibrational spectroscopic technique that useful tools in detecting biomolecules at near or on the surface of plasmonic nanostructures. Unique physicochemical and optical properties of noble metal nanostructures allow the assimilation of biomolecular probes and exhibit distinctive spectra, prompting the development of a plethora of biosensing platforms in molecular diagnostics. In SERS biosensor, signal to noise ration such as recognition and transducer elements that provide fingerprint spectrum at the lower limit of detection with specific binding or hybridized event, increasing reliability and sensitivity. Since the localized surface plasmon resonance (LSPR) of nanoparticle lies at the heart of SERS. It is essential to control all of the LSPR influencing factors in highly sensitivity signal strength that ensures reproducibility of SERS signals. SERS active substrates, transducer elements, metal surfaces modification, interparticle spacing, dielectric environment and selection of biorecognition molecules contribute in SERS signal strength. Modified metal structure with bioprobe and Raman reporter molecules provides a strong signature fingerprints that surely contribute to noble biosensor structural designing. We reviewed here ideal fabrication of nanostructure for SERS application in molecular sensing research fields.

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4076 ◽  
Author(s):  
June Hwang ◽  
Minyang Yang

Surface-enhanced Raman spectroscopy (SERS) is a promising analytical tool due to its label-free detection ability and superior sensitivity, which enable the detection of single molecules. Since its sensitivity is highly dependent on localized surface plasmon resonance, various methods have been applied for electric field-enhanced metal nanostructures. Despite the intensive research on practical applications of SERS, fabricating a sensitive and reproducible SERS sensor using a simple and low-cost process remains a challenge. Here, we report a simple strategy to produce a large-scale gold nanoparticle array based on laser interference lithography and the electrophoretic deposition of gold nanoparticles, generated through a pulsed laser ablation in liquid process. The fabricated gold nanoparticle array produced a sensitive, reproducible SERS signal, which allowed Rhodamine 6G to be detected at a concentration as low as 10−8 M, with an enhancement factor of 1.25 × 105. This advantageous fabrication strategy is expected to enable practical SERS applications.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 236
Author(s):  
Rebeca Moldovan ◽  
Valentin Toma ◽  
Bogdan-Cezar Iacob ◽  
Rareș Ionuț Știufiuc ◽  
Ede Bodoki

Extensive effort and research are currently channeled towards the implementation of SERS (Surface Enhanced Raman Spectroscopy) as a standard analytical tool as it has undisputedly demonstrated a great potential for trace detection of various analytes. Novel and improved substrates are continuously reported in this regard. It is generally believed that plasmonic nanostructures with plasmon resonances close to the excitation wavelength (on-resonance) generate stronger SERS enhancements, but this finding is still under debate. In the current paper, we compared off-resonance gold nanobones (GNBs) with on-resonance GNBs and gold nanorods (GNRs) in both colloidal dispersion and as close-packed films self-assembled at liquid-liquid interface. Rhodamine 6G (R6G) was used as a Raman reporter in order to evaluate SERS performances. A 17-, 18-, and 55-fold increase in the Raman signal was observed for nanostructures (off-resonance GNBs, on-resonance GNBs, and on-resonance GNRs, respectively) assembled at liquid-liquid interface compared to the same nanostructures in colloidal dispersion. SERS performances of off-resonance GNBs were superior to on-resonance nanostructures in both cases. Furthermore, when off-resonance GNBs were assembled at the liquid interface, a relative standard deviation of 4.56% of the recorded signal intensity and a limit of detection (LOD) of 5 × 10−9 M could be obtained for R6G, rendering this substrate suitable for analytical applications.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 619 ◽  
Author(s):  
ChaeWon Mun ◽  
Vo Thi Nhat Linh ◽  
Jung-Dae Kwon ◽  
Ho Sang Jung ◽  
Dong-Ho Kim ◽  
...  

This paper reports a highly sensitive and selective surface-enhanced Raman spectroscopy (SERS) sensing platform. We used a simple fabrication method to generate plasmonic hotspots through a direct maskless plasma etching of a polymer surface and the surface tension-driven assembly of high aspect ratio Ag/polymer nanopillars. These collapsed plasmonic nanopillars produced an enhanced near-field interaction via coupled localized surface plasmon resonance. The high density of the small nanogaps yielded a high plasmonic detection performance, with an average SERS enhancement factor of 1.5 × 107. More importantly, we demonstrated that the encapsulation of plasmonic nanostructures within nanofiltration membranes allowed the selective filtration of small molecules based on the degree of membrane swelling in organic solvents and molecular size. Nanofiltration membrane-encapsulated SERS substrates do not require pretreatments. Therefore, they provide a simple and fast detection of toxic molecules using portable Raman spectroscopy.


2015 ◽  
Vol 4 (3) ◽  
Author(s):  
Hongyan Liang ◽  
Hong Wei ◽  
Deng Pan ◽  
Hongxing Xu

AbstractNoble metal nanostructures have drawn attentions of researchers in many fields due to their particular optical properties. Controlling the metal nanostructures’ size, shape, material, assembly, and surrounding environment can tune their unique plasmonic features that are important for practical applications. In this review, we firstly discuss some novel metal nanostructures synthesized through wet chemical methods and their fundamental plasmonic properties. Then, some applications of these chemically synthesized nanostructures in plasmonics are highlighted, including surface-enhanced Raman spectroscopy, plasmonic sensing, optical nanoantennas, and plasmonic circuitry. Plasmonic nanostructures provide the ways to manipulate light at the nanometer scale and open the prospects of developing nanophotonic devices for sensing and information technologies.


2021 ◽  
Vol 189 (1) ◽  
Author(s):  
Ewelina Wiercigroch ◽  
Pawel Swit ◽  
Agnieszka Brzozka ◽  
Łukasz Pięta ◽  
Kamilla Malek

Abstract The design of a sandwich-type SERS immunoassay (surface-enhanced Raman spectroscopy) is demonstrated operating in dual surface enhancement and dual-tag paradigm. The capture and detection antibodies are linked to two SERS-active substrates and form together the three-dimensional (3D) structure after specific binding to interleukin 6. A variety of metal combinations is tested (Au–Ag, Au–Au, and Ag–Ag), but an enhanced electromagnetic field is generated only due to coupling of Ag and Au nanoparticles with an Au hexagonal nanoarray. The amplified in that way Raman signals improve the limit of detection over 3 times in comparison to the assay with only one SERS-active substrate. It is also shown that the proper readout of the true-positive signal can be achieved in assays with two Raman tags, and this approach also improves LOD. For the optimal combination of the metal–metal junction and Raman tags, a linear relationship between the Raman signal and the concentration of IL-6 is obtained in the range 0–1000 pg⋅mL−1with LOD of 25.2 pg mL−1and RSD < 10%. The presented proof-of-concept of the SERS immunoassay with the dual-enhancement and dual-tag opens additional opportunities for engineering reliable SERS biosensing. Graphical abstract


2017 ◽  
Vol 24 (6) ◽  
pp. 1209-1217 ◽  
Author(s):  
Amardeep Bharti ◽  
Ashish K. Agrawal ◽  
Balwant Singh ◽  
Sanjeev Gautam ◽  
Navdeep Goyal

Plasmonic metal nanostructures have a significant impact on a diverse domain of fields, including photocatalysis, antibacterial, drug vector, biosensors, photovoltaic cell, optical and electronic devices. Metal nanoparticles (MNps) are the simplest nanostructure promising ultrahigh stability, ease of manufacturing and tunable optical response. Silver nanoparticles (AgNp) dominate in the class of MNps because of their relatively high abundance, chemical activity and unique physical properties. Although MNps offer the desired physical properties, most of the synthesis and fabrication methods lag at the electronic grade due to an unbidden secondary product as a result of the direct chemical reduction process. In this paper, a facile protocol is presented for fabricating high-yield in situ plasmonic AgNps under monochromatic X-rays irradiation, without the use of any chemical reducing agent which prevents the formation of secondary products. The ascendancy of this protocol is to produce high quantitative yield with control over the reaction rate, particle size and localized surface plasmon resonance response, and also to provide the feasibility for in situ characterization. The role of X-ray energy, beam flux and integrated dose towards the fabrication of plasmonic nanostructures has been studied. This experiment extends plasmonic research and provides avenues for upgrading production technologies of MNps.


Nanophotonics ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 193-213 ◽  
Author(s):  
Aziz Genç ◽  
Javier Patarroyo ◽  
Jordi Sancho-Parramon ◽  
Neus G. Bastús ◽  
Victor Puntes ◽  
...  

AbstractMetallic nanostructures have received great attention due to their ability to generate surface plasmon resonances, which are collective oscillations of conduction electrons of a material excited by an electromagnetic wave. Plasmonic metal nanostructures are able to localize and manipulate the light at the nanoscale and, therefore, are attractive building blocks for various emerging applications. In particular, hollow nanostructures are promising plasmonic materials as cavities are known to have better plasmonic properties than their solid counterparts thanks to the plasmon hybridization mechanism. The hybridization of the plasmons results in the enhancement of the plasmon fields along with more homogeneous distribution as well as the reduction of localized surface plasmon resonance (LSPR) quenching due to absorption. In this review, we summarize the efforts on the synthesis of hollow metal nanostructures with an emphasis on the galvanic replacement reaction. In the second part of this review, we discuss the advancements on the characterization of plasmonic properties of hollow nanostructures, covering the single nanoparticle experiments, nanoscale characterization via electron energy-loss spectroscopy and modeling and simulation studies. Examples of the applications, i.e. sensing, surface enhanced Raman spectroscopy, photothermal ablation therapy of cancer, drug delivery or catalysis among others, where hollow nanostructures perform better than their solid counterparts, are also evaluated.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 359
Author(s):  
Francesco Ruffino

Bimetallic nanoparticles show novel electronic, optical, catalytic or photocatalytic properties different from those of monometallic nanoparticles and arising from the combination of the properties related to the presence of two individual metals but also from the synergy between the two metals. In this regard, bimetallic nanoparticles find applications in several technological areas ranging from energy production and storage to sensing. Often, these applications are based on optical properties of the bimetallic nanoparticles, for example, in plasmonic solar cells or in surface-enhanced Raman spectroscopy-based sensors. Hence, in these applications, the specific interaction between the bimetallic nanoparticles and the electromagnetic radiation plays the dominant role: properties as localized surface plasmon resonances and light-scattering efficiency are determined by the structure and shape of the bimetallic nanoparticles. In particular, for example, concerning core-shell bimetallic nanoparticles, the optical properties are strongly affected by the core/shell sizes ratio. On the basis of these considerations, in the present work, the Mie theory is used to analyze the light-scattering properties of bimetallic core–shell spherical nanoparticles (Au/Ag, AuPd, AuPt, CuAg, PdPt). By changing the core and shell sizes, calculations of the intensity of scattered light from these nanoparticles are reported in polar diagrams, and a comparison between the resulting scattering efficiencies is carried out so as to set a general framework useful to design light-scattering-based devices for desired applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 587
Author(s):  
Zirui Wang ◽  
Yanyan Huo ◽  
Tingyin Ning ◽  
Runcheng Liu ◽  
Zhipeng Zha ◽  
...  

Hyperbolic metamaterials (HMMs), supporting surface plasmon polaritons (SPPs), and highly confined bulk plasmon polaritons (BPPs) possess promising potential for application as surface-enhanced Raman scattering (SERS) substrates. In the present study, a composite SERS substrate based on a multilayer HMM and gold-nanoparticle (Au-NP) layer was fabricated. A strong electromagnetic field was generated at the nanogaps of the Au NPs under the coupling between localized surface plasmon resonance (LSPR) and a BPP. Additionally, a simulation of the composite structure was assessed using COMSOL; the results complied with those achieved through experiments: the SERS performance was enhanced, while the enhancing rate was downregulated, with the extension of the HMM periods. Furthermore, this structure exhibited high detection performance. During the experiments, rhodamine 6G (R6G) and malachite green (MG) acted as the probe molecules, and the limits of detection of the SERS substrate reached 10−10 and 10−8 M for R6G and MG, respectively. Moreover, the composite structure demonstrated prominent reproducibility and stability. The mentioned promising results reveal that the composite structure could have extensive applications, such as in biosensors and food safety inspection.


Sign in / Sign up

Export Citation Format

Share Document