An Overview on Degree of Dispersion: Conformational Molecular Structure-Interaction Force Relationship of Adsorbed Additive

2015 ◽  
Vol 1113 ◽  
pp. 210-216
Author(s):  
Hazlina Husin ◽  
Zulkafli Hassan ◽  
Norrulhuda Mohd Taib ◽  
Ku Halim Ku Hamid ◽  
Suriatie Mat Yusuf

An overview on molecular structure of adsorbed additive orientates at particle interface in order to understand the ability of dispersants to affect dispersion behaviour is presented. With a wide range of molecular structures, adsorbed additive molecule generates different conformational molecular structure (CMS) combined with interaction of a range of forces occurring with the adsorbed additive molecules and between the adsorbed additive molecules; hence change the surface chemistry of particles in the dispersion.

2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


2019 ◽  
Vol 23 (5) ◽  
pp. 503-516 ◽  
Author(s):  
Qiang Zhang ◽  
Xude Wang ◽  
Liyan Lv ◽  
Guangyue Su ◽  
Yuqing Zhao

Dammarane-type ginsenosides are a class of tetracyclic triterpenoids with the same dammarane skeleton. These compounds have a wide range of pharmaceutical applications for neoplasms, diabetes mellitus and other metabolic syndromes, hyperlipidemia, cardiovascular and cerebrovascular diseases, aging, neurodegenerative disease, bone disease, liver disease, kidney disease, gastrointestinal disease and other conditions. In order to develop new antineoplastic drugs, it is necessary to improve the bioactivity, solubility and bioavailability, and illuminate the mechanism of action of these compounds. A large number of ginsenosides and their derivatives have been separated from certain herbs or synthesized, and tested in various experiments, such as anti-proliferation, induction of apoptosis, cell cycle arrest and cancer-involved signaling pathways. In this review, we have summarized the progress in structural modification, shed light on the structure-activity relationship (SAR), and offered insights into biosynthesis-structural association. This review is expected to provide a preliminary guide for the modification and synthesis of ginsenosides.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042098062
Author(s):  
Shuangping Ma ◽  
Qingjun Ding ◽  
Fen Zhou ◽  
Huaxiong Zhu

The chemical modifications of lignin-based superplasticizers have attracted extensive attentions during recent years. The comprehending of the structure-activity relationship of lignin-based superplasticizer is important to promote the modification and application research of lignin resources. However, lignin features complex and variable molecular structure, which is not conducive to study on structure-activity relationship of lignin-based superplasticizer as well as development and application of new lignin-based superplasticizer. However, the related research work can be simplified by selecting small molecular compound with appropriate molecular structure as the lignin model compound. This article intends to study the structure-activity relationship of lignin-based superplasticizer by using dihydroeugenol as the lignin model compound. Through the substitution of lignin by dihydroeugenol during the synthesis process, a model compound lignin-based superplasticizer (DAFS) was synthesized. The adsorption and dispersion properties of this superplasticizer and reference sample (LAFS) were investigated by fluidity test, Zeta-potential measurement, Total organic carbon analysis and others. The results suggest that the adsorption behavior of both DAFS and LAFS conformed to the Langmuir isotherms and Pseudo-second order kinetic. In cement paste, added with 1 g/L of LAFS and DAFS, Zeta potential were reduced from +3.5 to −15.2 mV and −18.7 mV, respectively. The substitution of lignin by dihydroeugenol has no significantly influence on the dispersive property, but differences on rheological properties which need to be optimized in the future. All the tests confirmed that dihydroeugenol is suitable to replace lignin on exploring the structure-activity relationship of lignin-based superplasticizer. This research work provides new insight on model study of lignin-based superplasticizer.


Author(s):  
M. G. Monika Bai ◽  
H. Vignesh Babu ◽  
V. Lakshmi ◽  
M. Rajeswara Rao

Fluorescent porous organic polymers are a unique class of materials owing to their strong aggregation induced emission, long range exciton migration and permanent porosity, thus envisioned to possess a wide range of applications (sensing, OLEDs).


2021 ◽  
Vol 83 (4) ◽  
pp. 100-111
Author(s):  
Ahmad Anwar Zainuddin ◽  

Internet of Things (IoT) is an up-and-coming technology that has a wide variety of applications. It empowers physical objects to be organized in a specialized framework to grow its convenience in terms of ease and time utilization. It is to convert the thought of bridging the crevice between the physical world and the machine world. It is also being use in the wide range of the technology in this current situation. One of its applications is to monitor and store data over time from numerous devices allows for easy analysis of the dataset. This analysis can then be the basis of decisions made on the same. In this study, the concept, architecture, and relationship of IoT and Big Data are described. Next, several use cases in IoT and big data in the research methodology are studied. The opportunities and open challenges which including the future directions are described. Furthermore, by proposing a new architecture for big data analytics in the Internet of Things, this paper adds value. Overall, the various types of big IoT data analytics, their methods, and associated big data mining technologies are discussed.


2021 ◽  
Vol 19 (2) ◽  
pp. 273-298
Author(s):  
Sakineh Navidi-Baghi ◽  
Ali Izanloo ◽  
Alireza Qaeminia ◽  
Alireza Azad

Abstract The molecular structure of a complex metaphor comprises two or more atomic metaphorical parts, known as primary metaphors. In the same way, several molecular structures of metaphors may combine and form a mixture, known as mixed metaphors. In this study, different types of metaphoric integrations are reviewed and illustrated in figures to facilitate understanding the phenomena. Above all, we introduce double-ground metaphoric chain, a new form of metaphoric integration that has not been identified in the previous literature. Also, a distinction is made between single-ground and double-ground metaphoric chains. In the former, which has already been introduced, two basic metaphors are chained with the same form and have the same ground, while the latter includes two chained metaphors, one main metaphor plus a supportive one, with different grounds. In this analysis, we benefited from Conceptual Metaphor Theory (CMT) to analyse double-ground metaphoric chains. This study suggests that each metaphoric integration leads to a multifaceted conceptualization, in which each facet is related to one of the constituent micro-metaphors.


1992 ◽  
Vol 262 (6) ◽  
pp. S9 ◽  
Author(s):  
E Bowdan

Regulation of feeding is a fundamental element of homeostasis. This is reflected in the similarity of control mechanisms in a wide range of animals, including insects and humans. A close examination of feeding behavior can illuminate the physiological processes driving regulation. A simple, inexpensive method for recording fine details of feeding by caterpillars is described. Possible experiments, interpretation of the data, and the relationship of observations to the underlying physiology, are outlined.


Parasitology ◽  
1993 ◽  
Vol 107 (S1) ◽  
pp. S159-S167 ◽  
Author(s):  
P. S. Shetty ◽  
N. Shetty

Interactions between infection and nutrition have been well recognized for several years now since they contribute directly to the health of individuals and communities. Malnourished individuals are specially prone to developing infections while infections themselves can lead to profound changes in the nutritional status of the individual. Health workers in developing countries in the tropics have long recognized the mutually aggravating interactions of malnutrition and infection. The importance of this synergistic relationship between infection and nu-tritional status has been studied extensively in the case of young children. The nutritional status of a young child is a critical determinant of both c morbidity and mortality resulting from a wide range of infections: bacterial, viral, or parasitic. Chandra (1983), in his review on the relationship of nutrition, immunity and infection has categorized the wide range of infectious agents (bacterial, viral, fungal and parasitic) into those that are definitely, variably or minimally influenced by the nutritional status of the child.


Sign in / Sign up

Export Citation Format

Share Document