The Effect of the Carbon Fiber on Concrete Compressive Strength

2018 ◽  
Vol 1145 ◽  
pp. 106-111
Author(s):  
De Jia Liu ◽  
Mei Jun Chen ◽  
Li Xue ◽  
Fan He ◽  
Jian Hu

With the rapid development of construction, the high quality of the construction material is required. Mixing carbon fiber in concrete attracts more and more attention as it can reinforce concrete. However, the science research and engineering application of carbon fiber reinforced concrete is relatively few. In this paper, the effects of different mixing amount of carbon fiber and the sand ratio in concrete and the curing time of concrete and relationships between these factors were investigated. Proper carbon fiber and sand ratio can promote the compressive strength of concrete and it has a good resistance to cracking. The compressive strength of concrete with different mixing amounts of carbon fiber peaks when the sand ratio was 31% and the compressive strength was better when the carbon fiber mixing amount was 0.2% and 1% than any other ratios after 28 days. When the sand ratio was 31%, the compressive strength of carbon fiber mixing amount increased with the increase of curing time and it reached the top when the carbon fiber ratio was 0.8%. The mixing amount of carbon fiber also had a great influence on the early compressive strength to some extent. We anticipate that the research can offer certain reference for engineering practice.

India is producing enormous amounts of industrial by-products out of which 150 million tonnes of GGBS itself. Apart from disposal of this solid waste, engineers strive for its value addition through its use as a construction material for achieving better economy, eco-friendliness without compromising on technical aspects. In this study, varieties of concrete are mixed with GGBS as a replacement material for cement to understand its compressive strength and long term behaviour. It is seen from literature that the fibers enhance the performance of concrete. Accordingly, six trials were made with GGBS replacement along with variation of cement content, water cement ratio and steel fibers with aspect ratio 60 and variation in reinforcing indices. The workability of concrete increased with increasing the GGBS content and also observed there is a reduction in workability in fiber reinforced concrete. The results indicated that the concrete made with GGBS indicates the strength comparable to the concrete made with OPC for all replacement levels. There is a substantial decrease in strength at 80% replacement. While there is a substantial increase in long-term strength. The compressive strength of GGBS concrete was increased up to 19% than that of OPC concrete and also observed 5 to 12% strength increased in fiber reinforced concrete than GGBS concrete. For this purpose studied the compressive strength of concrete at the ages of 3, 7,28,56,90 and 180 days.


2020 ◽  
Vol 846 ◽  
pp. 207-212
Author(s):  
Ming Gin Lee ◽  
Yung Chih Wang ◽  
Wan Xuan Xiao ◽  
Ming Ju Lee ◽  
Tuz Yuan Huang

This study was conducted to assess the effect of CO2 curing on the compressive strength of high strength pervious concrete. The factors studied to evaluate compressive strength of concrete on CO2 curing pressure, curing time, and age of specimen at testing. Three Aggregate sizes, three CO2 curing pressures, three CO2 curing time, and three testing ages were used in this investigation. The research tried to produce a high strength pervious concrete and use carbon dioxide for curing to find out whether it could enhance the compressive strength. The results show that the compressive strength of the control group increases rapidly and its 90-day compressive strength closed to 60 MPa. The 1-day compressive strength has a major impact after CO2 curing and their strength decreased by about 0% to 50% as compared to the control group. However, it is observed that there is only slight difference in relationship between modulus of elasticity and compressive strength obtained from 100 by 200mm cylinders with CO2 curing.


2021 ◽  
Author(s):  
DENNIS SANTOS TAVARES ◽  
BRUNA CAMPOS AMARAL ◽  
DAVID AUGUSTO RIBEIRO ◽  
TADAYUKI YANAGI JUNIOR ◽  
FRANCISCO CARLOS GOMES ◽  
...  

Concrete is the main material used in the construction industry and its main property is the axial compressive strength. Usually the prediction of compressive strength is restricted to limited empirical equations and / or laboratory dosages. The objective of this study is to develop fuzzy systems capable of obtaining the axial compressive strength of concrete, from the mixtures and curing time. Several fuzzy systems were developed with Mamdani inference and different defuzzification methods. Triangular membership functions were adopted for the input variables in all systems and triangular functions for the output variables. The developed models were simulated and evaluated using three statistical indexes. The systems with Mamdani inference and centroid, bisector and mom defuzzification proved to be reliable and highly effective. The best performance was obtained by the fuzzy centroid defuzzification system according to the analyses.,


2015 ◽  
Vol 4 (4) ◽  
pp. 520 ◽  
Author(s):  
Mohammad Al-Rawashdeh ◽  
Ashraf Shaqadan

The purpose of this research is to investigate the feasibility of using basalt aggregates and plasticizers in concrete mixes. An elaborate experimental program that included a variation of plasticizer and basalt in concrete mixes. The laboratory investigation included measurements of sieve analysis, compressive strength, and slump test. The compressive test was evaluated at 7, 14, 28 days of curing time. The results show significant improvement in concrete strength up to 2% of additive plasticizer after that concrete strength was reduced.


2014 ◽  
Vol 662 ◽  
pp. 24-28 ◽  
Author(s):  
Xi Du ◽  
You Liang Chen ◽  
Yu Chen Li ◽  
Da Xiang Nie ◽  
Ji Huang

With cooling tests on polypropylene fiber reinforced concrete and plain concrete that were initially subjected to different heating temperatures, the change of mechanical properties including mass loss, uniaxial compressive strength and microstructure were analyzed. The results show that the compressive strength of concrete tend to decrease with an increase in temperature. After experiencing high temperatures, the internal fibers of the polypropylene fiber reinforced concrete melted and left a large number of voids in it, thereby deteriorating the mechanical properties of concrete.


2021 ◽  
Vol 328 ◽  
pp. 10006
Author(s):  
Daud Andang Pasalli ◽  
Dina Limbong Pamuttu ◽  
Rahmat Fajar Septiono ◽  
Chitra Utary ◽  
Hairulla Hairulla

The use of lightweight concrete materials in Indonesia, especially in the Merauke Regency area can be an alternative amid the rapid development of the housing sector. In this experimental study, the author took the initiative to replace coarse aggregate with wood charcoal as light coarse aggregate. The purpose of this study was to determine the value of compressive strength and to determine whether the wood charcoal material met the standard of lightweight concrete coarse aggregate. Planning the proportion of lightweight concrete mixture in this study using a volume ratio between cement, sand and wood charcoal of 1: 2, 1: 2: 2.5 and 1: 2: 5 with variations of test days at 3, 7, 14, 21 and 28 day. From the results of the compressive strength test of lightweight concrete, the use of wood charcoal aggregate as coarse aggregate in concrete causes the value of the compressive strength of concrete to decrease.


2017 ◽  
Vol 865 ◽  
pp. 289-294
Author(s):  
Xi Ri Kang ◽  
Guang Xiu Fang

This test uses polycarboxylate superplasticizer by adding 15% quantitative fly ash, 10%, 15%, 20% of slag, and 5%,7.5%, 10% of silica fume of the total amount of the cementitious material to be an equivalent replacement for cement. Ordinary materials were used to make the C70 high strength self-compacting concrete. The concrete slump, expansion degree, and the axial compressive strength of concrete were studied. Through testing, the mix proportion of each group of concrete slump was determined to be above 250mm. And the expansion degree to be above 550mm. The axial compressive strength satisfied the design strength value. At the same time, the optimal mix ratio was proposed. And the economic performance of each group was analyzed. There are references for a similar experimental design and engineering application.


2012 ◽  
Vol 598 ◽  
pp. 336-340
Author(s):  
Hisen Hua Lee ◽  
Yen Shuo Chen ◽  
Chi Wen Cheng

Abstract. Concrete as a most popular construction material has many advantages such as easiness to be formed into various shapes, common availability and relative low cost. However, the low tensile strength and brittleness are disadvantages for wider application of the material. In this study, an advanced material of high strength and strong abrasion resistance HMPE fiber was used to reinforce concrete properties. A series of experimental testing were carried out to examine the properties of both fresh and hardened HMPE fiber reinforced concrete. It was found that the addition of an HMPE fiber material in concrete may enhance its compressive strength as high as 20% increment without water-reducing admixture. If a water-reducing admixture was applied, the increment of compressive strength may reach as high as 25% for 1.5% volume ratio of fiber contained in concrete.


2021 ◽  
Vol 350 ◽  
pp. 00008
Author(s):  
Alena Sadouskaya ◽  
Syarhei Leanovich ◽  
Neli Budrevich ◽  
Elena Polonina

There are two most popular approaches to determining the compressive strength of concrete: testing cubes, testing cylinders. The use of different samples gives different results, which are intended to characterize one parameter of the material compressive strength. The article discusses a general approach to determining the compressive strength of cylinders and cubes. The analysis of the factors influencing the transition coefficients when testing the cylinder samples with the ratio of height to diameter is less than 2. The results of testing cubes and cylinders for compression made of fiber-reinforced concrete are presented.


Author(s):  
Rao Krishna ◽  
Rathish Kumar ◽  
B. Srinivas

Concrete is a versatile material with tremendous applications in civil engineering construction. Structural concrete elements are generally made with concrete having a compressive strength of 20 to 35 MPa. Lately, there is an increase in use of high strength concrete (HSC) in major construction projects such as high-rise buildings, and bridges involving members of different sizes and shapes. The compressive strength of concrete is used as the most basic and important material property in the design of reinforced concrete structures. It has become a problem to use this value as the control specimen sizes and shapes are different from country to country. In India, the characteristic compressive strength is usually measured based on 150 mm cubes [1]. But, the ACI code of practice specifies the design compressive strength based on the standard 150x300 mm cylinders [2]. The use of 100x200 mm cylinders gained more acceptance as the need to test high strength concrete increases [3]. In this context the size and shape of concrete becomes an important parameter for the compressive strength. In view of the significance of compressive strength of concrete and due to the fact that the structural elements of different sizes and shapes are used, it is proposed to investigate the effect of size and shape of the specimen on the compressive strength of concrete. In this work, specimens of plain as well as Glass Fiber Reinforced Concrete (GFRC) specimens are cast in order to carry out a comparative study.


Sign in / Sign up

Export Citation Format

Share Document