Experimental Study of Composite High Strength Self-Compacting Concrete

2017 ◽  
Vol 865 ◽  
pp. 289-294
Author(s):  
Xi Ri Kang ◽  
Guang Xiu Fang

This test uses polycarboxylate superplasticizer by adding 15% quantitative fly ash, 10%, 15%, 20% of slag, and 5%,7.5%, 10% of silica fume of the total amount of the cementitious material to be an equivalent replacement for cement. Ordinary materials were used to make the C70 high strength self-compacting concrete. The concrete slump, expansion degree, and the axial compressive strength of concrete were studied. Through testing, the mix proportion of each group of concrete slump was determined to be above 250mm. And the expansion degree to be above 550mm. The axial compressive strength satisfied the design strength value. At the same time, the optimal mix ratio was proposed. And the economic performance of each group was analyzed. There are references for a similar experimental design and engineering application.

2010 ◽  
Vol 13 (2) ◽  
pp. 5-15
Author(s):  
Hoang Huy Kim ◽  
Vinh Duc Bui ◽  
Manh Van Tran ◽  
Tri Son Ha

Ultra high strength self compacting concrete (UHSSCC) with high filling ability, passing ability, segregation resistance and ultra high compressive strength have been used in many modern construction project. This paper represents the optimization of concrete composition for ultra high strength self compacting concrete, ỉn this experiment, river sand and crush stone were used as fine aggregate, Dmax of coarse aggregate is 10 mm. The study show that slump flow was 525 mm up to 850 mm and compressive strength was 140 MPa up to 170 MPa.


2013 ◽  
Vol 864-867 ◽  
pp. 1923-1928
Author(s):  
Yue Xu ◽  
Jian Xi Li ◽  
Li Li Kan

A new kind of high strength cementitious material is made from phosphogypsum (PG), active carbon and fly-ash. Through the orthogonal research, it was showed that the calcination temperature, retention time, dosage of active carbon and fly ash on the compressive strength of cementitious binder are the most important. The result also showed that, in the conditions of temperature 1200°C, time retention 30 min, dosage of active carbon 10%, dosage of fly ash 5%, the compressive strength of the cementitious material for 3d and 28d could reach to 46.35MPa and 92.70MPa, the content of sulfur trioxide was 11.60% accordingly. A lot of active mineral materials, such as dicalcium silicate, tricalcium silicate, tricalcium aluminate were formed in the calcination. The C-S-H gel, calcium hydroxide and ettringite were found in 3d and 28d hydrates. It is found that the lime saturation ratio and silica modulus need to be control between 0.40~0.65 and 4~8 in order to produce high strength cementitious material.


2020 ◽  
Vol 846 ◽  
pp. 207-212
Author(s):  
Ming Gin Lee ◽  
Yung Chih Wang ◽  
Wan Xuan Xiao ◽  
Ming Ju Lee ◽  
Tuz Yuan Huang

This study was conducted to assess the effect of CO2 curing on the compressive strength of high strength pervious concrete. The factors studied to evaluate compressive strength of concrete on CO2 curing pressure, curing time, and age of specimen at testing. Three Aggregate sizes, three CO2 curing pressures, three CO2 curing time, and three testing ages were used in this investigation. The research tried to produce a high strength pervious concrete and use carbon dioxide for curing to find out whether it could enhance the compressive strength. The results show that the compressive strength of the control group increases rapidly and its 90-day compressive strength closed to 60 MPa. The 1-day compressive strength has a major impact after CO2 curing and their strength decreased by about 0% to 50% as compared to the control group. However, it is observed that there is only slight difference in relationship between modulus of elasticity and compressive strength obtained from 100 by 200mm cylinders with CO2 curing.


2015 ◽  
Vol 1119 ◽  
pp. 752-755
Author(s):  
Chang Zheng Sun ◽  
Zheng Wang

Optimization of mix proportion parameter ,Using ordinary raw materials makes a C80 high performance self-compacting concrete;By joining a homemade perceptual expansion agent, significantly improve the early strength of concrete and effective to solve the high strength of self-compacting concrete caused by gelled material consumption big contraction;Further study on the working performance of high-strength self-compacting concrete, age strength, analysis the influence factors of concrete are discussed.


2018 ◽  
Vol 203 ◽  
pp. 06022
Author(s):  
Salmia Beddu ◽  
Daud Mohamad ◽  
Fadzli Mohamed Nazri ◽  
Siti Nabihah Sadon ◽  
Mohamed Galal Elshawesh

This study investigates the self-curing concrete using baby polymer diapers as substitute method of curing process in order to improve mechanical and physical properties of concrete. Three different proportion of baby polymer diapers which are 1%, 3% and 5% were mix with concrete. Slump, compressive strength and drying shrinkage test were performed in order to study the workability, strength and durability of the concrete. All concrete were tested for 1, 3, 7, 14, and 28 days for drying shrinkage test. Meanwhile, all concrete were test at 3, 7 and 28 days for compressive strength test. Compressive strength of concrete containing 5% baby polymer diapers show the highest strength at 28 days compared to others percentage. Thus, it indicates that application of baby polymer diaper as self-cure agent can improve the concrete performances.


2017 ◽  
Vol 67 (325) ◽  
pp. 111 ◽  
Author(s):  
D. Burgos ◽  
A. Guzmán ◽  
K. M.A. Hossain ◽  
S. Delvasto

This study evaluates the use of large amounts of fine powders (fillers) derived from a Colombian volcanic material into the production of self-compacting concrete (SCC) for lower strength applications. The effects on SCC properties were studied with the incorporation of up to 50% of volcanic material of Tolima (MVT) as a partial substitute of the total weight of Portland cement. The workability was determined through slump flow, V-funnel, and L-box test. The compressive strength results were analyzed statistically by MINITAB. These demonstrated that 30% (by total weight of cementitious material) was the maximum allowable percentage of MVT to be used in the production of SCCs. Based on this, mechanical and permeability properties of SCC MVT 30% were evaluated at 28, 90 y 360 curing days. SCC MVT 30% exhibited compressive strength of 21 and 27 MPa after 28 and 360 days of curing, respectively.


2018 ◽  
Vol 4 (4) ◽  
pp. 54
Author(s):  
Iis Nurjamilah ◽  
Abinhot Sihotang

ABSTRAKKajian karakteristik beton memadat sendiri yang menggunakan serat ijuk merupakan sebuah kajian yang dilakukan untuk mengetahui pengaruh penambahan serat ijuk terhadap karakteristik beton memadat sendiri (SCC). Beton memadat sendiri yang menggunakan serat ijuk (PFSCC) didesain memiliki campuran yang encer, bermutu tinggi (= 40 MPa) dan memiliki persentase kekuatan lentur yang lebih baik. PFSCC  didapatkan dari hasil pencampuran antara semen sebanyak 85%, fly ash 15%, superplastizicer 1,5%, serat ijuk 0%, 0,5%; 1%; 1,5%; 2% dan 3% dari berat binder (semen + fly ash), kadar air 190 kg/m3, agregat kasar 552,47 kg/m3 dan pasir 1.063 kg/m3. Semakin banyak persentase penambahan serat ijuk ke dalam campuran berdampak terhadap menurunnya workability beton segar. Penambahan serat ijuk yang paling baik adalah sebanyak 1%, penambahan tersebut dapat meningkatkan kekuatan tekan beton sebesar 13% dan lentur sebesar 1,8%.Kata kunci: beton memadat sendiri (SCC), beton berserat, beton memadat sendiri yang menggunakan serat ijuk (PFSCC), serat ijuk ABSTRACTThe study of characteristics self compacting concrete using palm fibers is a study conducted to determine the effect of adding palm fibers to characteristics of self compacting concrete (SCC). palm fibers self compacting concrete (PFSCC) is designed to have a dilute mixture, high strength (= 40 MPa), and have better precentage flexural strength. PFSCC was obtained from mixing of 85% cement, 15% fly ash, 1.5% superplastizicer, 0%, 0.5%, 1%, 1.5%, 2% and 3% palm fibers from the weight of binder  (cement + fly ash), water content 190 kg/m3, coarse aggregate 552.47 kg/m3 and sand 1,063 kg/m3. The more persentage palm fibers content added to the mixture makes workability of fresh concrete decreases. The best addition of palm fiber is 1%, this addition can increases the compressive strength 13% and flexural strength 1.8%.Keywords: self compacting concrete (SCC), fiber concrete, Palm fiber self compacting concrete (PFSCC), palm fiber


2010 ◽  
Vol 152-153 ◽  
pp. 1176-1179 ◽  
Author(s):  
Feng Lan Li ◽  
Qian Zhu

To improve the application of the new proto-machine-made sand in structural engineering, tests are carried out to study the drying shrinkage of concrete affected by stone powder in proto- machine-made sand. The target cubic compressive strength of concrete is 55 MPa, the main factor varied in mix proportion of concrete is the contents of stone powder by mass of proto-machine-made sand from 3 % to 16 %. The drying shrinkage strains of concrete are measured by the standard method at the ages of 1 d, 3 d, 7 d, 14 d, 28 d, 60 d, 90 d, 120 d, 150 d and 180 d. Based on test results, the drying shrinkage of concrete affected by the contents of stone powder in proto-machine-made sand is analyzed and compared with that of similar test of concrete with traditional machine-made sand, which shows that there is the optimum content of stone powder resulting in the lower drying shrinkage of concrete. The formula for predicting drying shrinkage strain of concrete is proposed.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Fatih Özcan ◽  
Halil Kaymak

In this work, utilization of metakaolin (MK) and calcite (C), working reversely in workability aspect, as mineral admixture in self-compacting concrete (SCC), was investigated. MK and C replaced cement in mass basis at various replacement ratios, separately and together. In total, 19 different SCCs were produced. Binder content and water to binder ratio were selected as 500 kg/m3 and 0.4, respectively. Workability tests including slump flow, T50, L-box, and V-funnel tests were performed. Consistency and setting times of binder paste were measured. While replacement of MK with cement increased the amount of plasticiser requirement, calcite worked reversely and decreased it. Reverse influence of MK and C on plasticiser requirement of SCC made possible to produce SCC at total 45% replacement ratio of MK and C together. Samples of SCC were cured in water at 20°C temperature. Compressive strengths of SCC samples were measured up to six months to evaluate the influence of MK and C, separately and together. Ultrasonic pulse velocity, abrasion, and capillary water absorption values of samples were determined at specified age. MK inclusion in concrete reduces workability, while C inclusion increases it. C and MK inclusion together remedied workability of concrete and enabled to produce SCC with high volume of admixtures. Furthermore, C incorporation increased one-day compressive strength, while MK incorporation reduced it in comparison with control concrete. In long term, C inclusion reduced compressive strength; however, MK inclusion increased it. C inclusion remedied one-day strength of concrete when it was used together with MK. MK inclusion remedied long-term compressive strength when it was used together with C and enabled to produce high-strength SCC with high volume of admixtures. SCC containing MK and C together showed better durability-related property.


2021 ◽  
Author(s):  
DENNIS SANTOS TAVARES ◽  
BRUNA CAMPOS AMARAL ◽  
DAVID AUGUSTO RIBEIRO ◽  
TADAYUKI YANAGI JUNIOR ◽  
FRANCISCO CARLOS GOMES ◽  
...  

Concrete is the main material used in the construction industry and its main property is the axial compressive strength. Usually the prediction of compressive strength is restricted to limited empirical equations and / or laboratory dosages. The objective of this study is to develop fuzzy systems capable of obtaining the axial compressive strength of concrete, from the mixtures and curing time. Several fuzzy systems were developed with Mamdani inference and different defuzzification methods. Triangular membership functions were adopted for the input variables in all systems and triangular functions for the output variables. The developed models were simulated and evaluated using three statistical indexes. The systems with Mamdani inference and centroid, bisector and mom defuzzification proved to be reliable and highly effective. The best performance was obtained by the fuzzy centroid defuzzification system according to the analyses.,


Sign in / Sign up

Export Citation Format

Share Document