Experimental Research on Seismic Behavior of Non-Rigid Steel Beam-Column Connections with Concrete Cover

2010 ◽  
Vol 133-134 ◽  
pp. 1233-1239
Author(s):  
Li Xue Jiang ◽  
Feng Zhou ◽  
Qiao Wen Zheng

Four steel beam-column connections were tested under cyclic loads to investigate effects of the concrete cover and the cast-in-situ slabs on the failure modes, stiffness, load-carrying capacity, ductility and energy-dissipation capacity. The test results show that the stiffness and bending strength of the non-rigid steel connections are significantly increased due to the presence of concrete cover and the cast-in-situ slabs can further enhance the connections. Moreover, the connection with slab is prone to debonding failure along beam-slab interface resulting in a remarkable decrease of the stiffness and strength. Practical methods are also presented for analyzing and assessing the steel frames with non-rigid connections considering effects of concrete cover.

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5272-5286
Author(s):  
Huifeng Yang ◽  
Chaochao Wang ◽  
Junbin Hu ◽  
Haotian Tao ◽  
Jiwei Liu ◽  
...  

To evaluate the static and seismic behaviour of glulam beam-to-column connections with screwed-in threaded rods, nine specimens grouped in three were tested under both monotonic and reversed cyclic loads. The failure modes, moment resistance, initial rotation stiffness, ductility, and energy dissipation capacity of the developed connections were investigated. The results indicated that the developed beam-to-column connections showed superior structural performance. Furthermore, with the introduction of a steel bracket, the hybrid screwed-in threaded rod connection features larger stiffness, higher load-carrying capacity, remarkable ductility, and better energy dissipation capacity. The main failure modes included the yielding of steel brackets, as well as the yielding or rupture of the threaded rods, which indicated a ductile behaviour. The connection specimens with steel columns showed larger stiffness than those with glulam columns, which is reasonable for the bigger compressive deformation of glulam columns.


Author(s):  
B.-R. Höhn ◽  
H. Winter ◽  
K. Michaelis ◽  
F. Vollhüter

Abstract Bevel and hypoid gears are widely used for gears with crossed axis. The influence of a pinion offset on the load carrying capacity — pitting resistance and bending strength — is introduced in a different way in commonly used calculation methods. Load carrying and measurement investigations on the influence of pinion offset on pitting resistance and bending strength are reported. Tests show an increasing bending strength and decreasing maximum tooth root stresses with increasing pinion offset. Also a slight increase of pitting resistance and a slight decrease of the Hertzian pressure was evaluated. The load carrying calculation results for bevel gears without pinion offset, DIN 3991, is in good agreement with test results. The bending strength of hypoid gears calculated according to Niemann/Winter, is greater than that experimentally measured. For pitting resistance, however, the calculation is less than the measured results.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
YouWu Xu ◽  
Jian Yao ◽  
Feng Hu ◽  
Ying Zhou ◽  
Shuai Jiang

Elliptical concrete-filled steel tubular (CFST) column is a new form of CFST columns, consisting of an outer elliptical tube filled with concrete. Although the study on mechanical performance of the elliptical CFST members is receiving more and more attention, they have been limited to static behavior. Against this background, an experimental study on elliptical CFST columns was carried out under combined axial compression and cyclic lateral loading. The failure modes, hysteretic curves, skeleton curves, load carrying capacity, deformability, stiffness degradation, and energy dissipation ability was obtained and discussed. The test results indicated that the elliptical CFST columns possess excellent seismic performance and ductility. Valuable experimental data were provided for the formulation of the theoretical hysteresis model of the elliptical CFST columns.


2021 ◽  
Vol 895 ◽  
pp. 77-87
Author(s):  
Hussamalden Alqahar Ammar ◽  
Ahmad Jabbar Hussain Alshimmeri

The main objectives of this study are to study the enhancement of the load-carrying capacity of Asymmetrical castellated beams with encasement the beams by Reactive Powder Concrete (RPC) and lacing reinforcement, the effect of the gap between top and bottom parts of Asymmetrical castellated steel beam at web post, and serviceability of the confined Asymmetrical castellated steel. This study presents two concentrated loads test results for four specimens Asymmetrical castellated beams section encasement by Reactive powder concrete (RPC) with laced reinforcement. The encasement of the Asymmetrical castellated steel beam consists of, flanges unstiffened element height was filled with RPC for each side and laced reinforced which are used inclined continuous reinforcement of two layers on each side of the Asymmetrical castellated steel beam web. The inclination angle of lacing reinforcement concerning the longitudinal axis is 45. Four specimens with four different configurations will be prepared and tested under two concentrated loads at the mid-third of the beam span. The tested specimen's properties are the First model; unconfined, Asymmetrical castellated steel beam (Reference), while the second, third, and fourth models consist of Asymmetrical Castellated steel beam (web and flange) confined with (RPC) with 19.1, 38.2, and 57.3 mm gap, respectively, between the two beams sections (the upper and lower one). The results of the experimental tests show that the use of RPC enhanced the properties of the castellated beams in all selected conditions despite creating a gap between the castellated beams.


2021 ◽  
pp. 136943322110179
Author(s):  
R.Z. Yang ◽  
Y. Xiao

This paper reports tensile and compressive test results of bolted glubam (glued laminated bamboo) connections. The tensile tests were carried out with two types of specimens designed for tensile loadings in the longitudinal and transverse directions in relevance to the orientations of the bidirectional bamboo strips (fibers). In each direction, the specimens were further divided into nine groups according to different combination conditions of end and edge spacings. Compressive tests were executed for three groups of bolted glubam connections, with varying thickness of the main board and bolting conditions. The tensile experiments show that the failure of the specimens is strongly influenced by the loading directions. Recommended end distance and side distance are provided, whereas the load carrying capacity is analyzed. Based on the compressive testing results, failure modes and load displacement relationships are analyzed, in which the yield bearing capacity is shown to be close to that given by the equations in existing design specifications for timber structure.


Author(s):  
Daniel Müller ◽  
Jens Stahl ◽  
Anian Nürnberger ◽  
Roland Golle ◽  
Thomas Tobie ◽  
...  

AbstractThe manufacturing of case-hardened gears usually consists of several complex and expensive steps to ensure high load carrying capacity. The load carrying capacity for the main fatigue failure modes pitting and tooth root breakage can be increased significantly by increasing the near surface compressive residual stresses. In earlier publications, different shear cutting techniques, the near-net-shape-blanking processes (NNSBP’s), were investigated regarding a favorable residual stress state. The influence of the process parameters on the amount of clean cut, surface roughness, hardness and residual stresses was investigated. Furthermore, fatigue bending tests were carried out using C-shaped specimens. This paper reports about involute gears that are manufactured by fineblanking. This NNSBP was identified as suitable based on the previous research, because it led to a high amount of clean cut and favorable residual stresses. For the fineblanked gears of S355MC (1.0976), the die edge radii were varied and the effects on the cut surface geometry, hardness distribution, surface roughness and residual stresses are investigated. The accuracy of blanking the gear geometry is measured, and the tooth root bending strength is determined in a pulsating test rig according to standardized testing methods. It is shown that it is possible to manufacture gears by fineblanking with a high precision comparable to gear hobbing. Additionally, the cut surface properties lead to an increased tooth root bending strength.


Author(s):  
Thomas Westergaard Jensen ◽  
Linh Cao Hoang

The conic yield criteria for reinforced concrete slabs in bending are often used when evaluating the load‐carrying capacity of slab bridges. In the last decades, the yield criteria combined with numerical limit analysis have shown to be efficient methods to determine the load carrying capacity of slabs. However, the yield criteria overestimate the torsion capacity of slabs with high reinforcement ratios and it cannot handle slabs with construction joints. In this paper, numerical limit analysis with the conic yield criteria are compared with yield criteria based on an optimized layer model. The analysis show an increasing overestimation of the load carrying capacity for increasing reinforcement degrees. Furthermore, yield criteria, which combine the conic yield criteria with an extra linear criterion due to friction, are presented for slab bridges with construction joints. The yield criteria for slabs with construction joints are used, in combination with limit analysis, to evaluate a bridge constructed of pre‐cast overturned T‐beams and in‐situ concrete. The analysis show that the load carrying capacity is overestimated, when the construction joints are not considered in the yield criteria.


2021 ◽  
Vol 28 (1) ◽  
pp. 71-83
Author(s):  
Mazin Abdulrahman ◽  
Shakir Salih ◽  
Rusul Abduljabbar

In this research, an experimental study is conducted to investigate the behavior and strength of high strength reinforced concrete corbels externally bonded with CFRP fabric sheets and Plates with different patterns taking into account the effect of adopted variables in enhancing the ultimate strength; the effect of shear span to effective depth (a/d), configuration, type and amount of bonding. Eleven high strength reinforced corbels were cast and tested under vertical loads. Test results showed there was an improvement in the behavior and load carrying capacity of all strengthened corbels. An increasing in the ultimate strength of strengthened corbel by inclined CFRP strips reached to (92.1%) while the increasing reached to (84.21%) for using one horizontal CFRP Plates compared to un-strengthened reference specimen. Also, it can be conducted that the increase of (a/d) ratio from (0.6 to 0.8) resulted in decreasing by 21.05% in ultimate load capacity of corbels and from (0.4 to 0.6) by 31.25% and 58.69% in cracking and ultimate loads respectively Using CFRP .


2011 ◽  
Vol 105-107 ◽  
pp. 1685-1688
Author(s):  
Meng Chen ◽  
Pin Wu Guan

Prestressing spiral groove tendon is a new sort prestressing tendon, its characteristic value of tensile yield strength fyk=1000MPa. Firstly, the yield strength, ultimate tensile strength, elastic modulus and elongation are all tested. According to 68 pullout tests, the bond-anchoring curves and failure modes have been studied, and the effects of concrete strength, diameter, anchoring length, thickness of concrete cover and stirrup ratio have been all analyzed. Finally, the equation for ultimate bond-anchoring strength has been suggested by statistical regression, and the test results are in good agreement with values of the suggested equation.


1987 ◽  
Vol 2 (3) ◽  
pp. 77-80 ◽  
Author(s):  
Marvin R. Pyles ◽  
Joan Stoupa

Abstract In order to quantify the stump anchor capacity of small second-growth Douglas-fir (Pseudotsuga menziesii [Mirb]. Franco) trees, load tests to failure were conducted on 18 stumps from trees 7 to 16.5 in dbh. The tests produced ultimate loads that varied as the square of the tree diameter. However, the ultimate load typically occurred at stump system deformations that were far in excess of that which would be considered failure of a stump anchor. A hyperbolic equation was used to describe the load-deformation behavior of each stump tested and was generalized to describe all the test results. West. J. Appl. For. 2(3):72-80, July 1987.


Sign in / Sign up

Export Citation Format

Share Document