Environmental and Economic Assessment of Recycled Aluminum Alloy Production - A Case Study of China

2010 ◽  
Vol 146-147 ◽  
pp. 1027-1030
Author(s):  
Jing Min Hong ◽  
Zainab Z. Ismail ◽  
Jing Lan Hong

A life cycle assessment was carried out to estimate the environmental and economic impacts of recycled aluminum alloy production. The impact seen from non-carcinogens, respiratory inorganics, terrestrial ecotoxicity, global warming and non-renewable energy categories played an important role to overall environmental impacts. The impact seen from carcinogens and aquatic ecotoxicity played relatively small role, while the impact seen from the rest categories affect the environment was ignorable. Specifically, the emissions from the aluminum and silicon production stages involved played an important role due to high energy consumption, while potential impact generated from other elements was quite small. Similarly, the cost of old aluminum scrap represented the dominant contribution to overall economic impacts. Accordingly, choosing natural gas based electricity production technology and improving old aluminum scrap consumption efficiency are the efficient way to minimize the overall environmental and economic impact, respectively.

2017 ◽  
Vol 28 (7) ◽  
pp. 687-705 ◽  
Author(s):  
Blanca Moreno ◽  
María T García-Álvarez

Spain and Portugal are highly dependent on energy from abroad, importing more than 70% of all the energy they consume. This high energy dependence could involve important effects on the level and stability of their electricity prices as a half the gross electricity generated in both countries came from power stations using imported combustible fuels (such as natural gas, coal and oil). In general, changes in the prices of these fossil fuels can directly affect household electricity prices, since generation costs are likely to be transmitted through to the wholesale electricity market. Moreover, in the framework of the European Union Emission Trading System, electricity production technologies tend to incorporate their costs of carbon dioxide emission allowances in sale offers with the consequent increase of the electricity prices. The objective of this paper is to analyze the influence of fossil fuel costs and prices of carbon dioxide emission allowances in the EU on the Spanish and Portuguese electricity prices. With this aim, a maximum entropy econometric approach is used. The obtained results indicate that not only the price of imported gas are very important in explaining Spanish and Portuguese electricity prices but also the price of carbon dioxide emission allowances in the EU.


2019 ◽  
Vol 214 ◽  
pp. 02019
Author(s):  
V. Daniel Elvira

Detector simulation has become fundamental to the success of modern high-energy physics (HEP) experiments. For example, the Geant4-based simulation applications developed by the ATLAS and CMS experiments played a major role for them to produce physics measurements of unprecedented quality and precision with faster turnaround, from data taking to journal submission, than any previous hadron collider experiment. The material presented here contains highlights of a recent review on the impact of detector simulation in particle physics collider experiments published in Ref. [1]. It includes examples of applications to detector design and optimization, software development and testing of computing infrastructure, and modeling of physics objects and their kinematics. The cost and economic impact of simulation in the CMS experiment is also presented. A discussion on future detector simulation needs, challenges and potential solutions to address them is included at the end.


2019 ◽  
Vol 8 (5) ◽  
pp. 199-206 ◽  
Author(s):  
C. L. Romanò ◽  
H. Tsuchiya ◽  
I. Morelli ◽  
A. G. Battaglia ◽  
L. Drago

Implant-related infection is one of the leading reasons for failure in orthopaedics and trauma, and results in high social and economic costs. Various antibacterial coating technologies have proven to be safe and effective both in preclinical and clinical studies, with post-surgical implant-related infections reduced by 90% in some cases, depending on the type of coating and experimental setup used. Economic assessment may enable the cost-to-benefit profile of any given antibacterial coating to be defined, based on the expected infection rate with and without the coating, the cost of the infection management, and the cost of the coating. After reviewing the latest evidence on the available antibacterial coatings, we quantified the impact caused by delaying their large-scale application. Considering only joint arthroplasties, our calculations indicated that for an antibacterial coating, with a final user’s cost price of €600 and able to reduce post-surgical infection by 80%, each year of delay to its large-scale application would cause an estimated 35 200 new cases of post-surgical infection in Europe, equating to additional hospital costs of approximately €440 million per year. An adequate reimbursement policy for antibacterial coatings may benefit patients, healthcare systems, and related research, as could faster and more affordable regulatory pathways for the technologies still in the pipeline. This could significantly reduce the social and economic burden of implant-related infections in orthopaedics and trauma.Cite this article: C. L. Romanò, H. Tsuchiya, I. Morelli, A. G. Battaglia, L. Drago. Antibacterial coating of implants: are we missing something? Bone Joint Res 2019;8:199–206. DOI: 10.1302/2046-3758.85.BJR-2018-0316.


Author(s):  
Sebastian Lepszy ◽  
Tadeusz Chmielniak

Biomass integrated gasification combined cycles (BIGCC) are an interesting solution for electricity production. In relation to other biomass conversion technologies, BIGCC is characterized by relative high energy efficiency. For the sake of high complexity of such systems, one of crucial tasks is evaluation and comparison of the different technological structures of BIGCC. The article shows models and results of simulations of gas steam cycles integrated with biomass gasification. All models and simulations are preformed with Aspen Plus computer program. In the paper the main comparison is made between systems with simple gas turbine and gas turbine with regeneration. Simple gas turbine model based on LM2500 gas turbine parameters, Mercury 50 gas turbine parameters are used for model of gas turbine with regeneration. The model of gas generator consists of two equilibrium reactors. The use of two reactors led to more precise simulations of the flue gas composition, than the model with one reactor. Systems used for study include low-temperature gas cleaning system. Steam cycle consists of 1-pressure heat recovery steam generator (HRSG) and a condensing steam turbine. The main results of the work are: comparison of energy efficiency between system with gas turbine with regeneration and simple gas turbine, sensitive analysis of the impact of pressure in HRSG on energy efficiency, comparison of energy efficiency and heat and mass streams for different configurations of heat exchangers.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 296
Author(s):  
Jie Wang ◽  
Yong Gao ◽  
Zhiming You ◽  
Jiakun Fan ◽  
Jing Zhang ◽  
...  

Laser ablation technique is a novel method for obtaining a surface with a low secondary electron yield (SEY) that can mitigate electron cloud in high-energy accelerators. Before the installation of laser processed aluminum alloy, surface cleaning is of the essence to reduce the contaminations of ultra-high vacuum systems for providing appropriate pressure for beam operation consequently. Laser processed aluminum alloy is one of the crucial candidates for the vacuum system construction of future accelerators. Moreover, ultrasonic cleaning is an essential procedure for most materials applied in vacuum systems. Therefore, in order to verify the stability of the laser created structures by ultrasonic cleaning and evaluate the impact of the cleaning on the SEYs, the surface topographies, and the surface chemistries of laser treated aluminum alloy, SEY measurements and related tests were performed. After ultrasonic cleaning, the SEYs of laser treated aluminum alloy increased from 0.99, 1.05, and 1.16 to 1.43, 1.74, and 1.38, respectively. Compared to the surface roughness of uncleaned laser treated aluminum samples, the cleaned laser treated ones decreased from 10.7, 7.5, and 14.5 to 9.4, 6.9, and 12.9, respectively. The results indicate that ultrasonic cleaning can induce the SEY increase of laser processed aluminum alloy. The correlative mechanism between the surface morphology, the surface chemistry, and SEY increase were analyzed for the first time.


Water Policy ◽  
2008 ◽  
Vol 10 (S1) ◽  
pp. 11-21 ◽  
Author(s):  
David Zilberman ◽  
Thomas Sproul ◽  
Deepak Rajagopal ◽  
Steven Sexton ◽  
Petra Hellegers

Rising energy prices will alter water allocation and distribution. Water extraction and conveyance will become more costly and demand for hydroelectric power will grow. The higher cost of energy will substantially increase the cost of groundwater, whereas increasing demand for hydroelectric power may reduce the price and increase supply of surface water. High energy prices and geopolitical considerations drive investment in land-and water-intensive biofuel technology, diverting land and water supplies to energy production at the expense of food production. Thus, rising energy prices will alter the allocation of water, increase the price of food and may have negative distributional effects. The impact of rising energy prices and the introduction of biofuels can be partly offset by the development and adoption of new technologies, including biotechnology. The models considered here can be used to determine the effects of rising energy prices on inputs, outputs, allocation decisions and impact on distribution.


2020 ◽  
Vol 16 (9) ◽  
pp. e884-e892
Author(s):  
Sophy T. F. Shih ◽  
Angela Mellerick ◽  
Georgina Akers ◽  
Kathryn Whitfield ◽  
Marj Moodie

PURPOSE: The aim of this economic assessment was to evaluate the impact of a new nurse-led model of care, the Symptom and Urgent Review Clinic (SURC), for patients with cancer experiencing disease- or treatment-related symptoms. METHODS: An economic assessment was undertaken to estimate costs of the SURC from the service funder perspective and to compare the cost with cost offsets stemming from the implementation of the SURC. The cost offsets focused on the changes in emergency department (ED) presentations and inpatient admissions during a comparable 6-month period before and after the SURC implementation. Costs were analyzed in 2018 Australian dollars, and return on investment was calculated by comparing the cost offsets in the ED and inpatient units with the cost of the SURC. RESULTS: After the implementation of the SURC, patients were less likely to present to the ED (7.2% v 8.5%; P = .01), and patients who did present to the ED were more likely to be admitted to inpatient units (78% v 71%; P = .03) for additional treatment. The post-SURC period had a net cost savings of $37,090 compared with the pre-SURC period. From the service funder perspective, the SURC achieved an investment return of $1.73 for every dollar invested in the new service. CONCLUSION: Our study establishes the economic credentials of a new care model using empirical linked hospital service data. The SURC presents a new cancer care service for policy consideration from an economic standpoint. It demonstrates an efficient approach to hospital resource allocation to deliver quality cancer care.


2020 ◽  
Vol 3 (1) ◽  
pp. 98-109
Author(s):  
Wes Grebski ◽  
Stefan Czerwiński ◽  
Jan Kania

AbstractThe article includes a comparative analysis of different methods of solving energy problems especially meeting the demand for electricity. Energy problems became a global concern due to the rapid increase in the world population. Energy consumption reflects the habits of the society and the nature of the economy. The focus of the article is the analysis of the United States (USA) energy economy in terms of meeting the needs of industry and society. It includes a comparison of costs of generating electricity obtained from various sources. It also includes an analysis of opportunities and threats related to the energy sector’s dependence on individual energy sources. Meeting the demand for electricity cannot be solved by increasing only the energy generation. The cost of increasing electricity production is always higher compared to increasing energy efficiency. The impact of energy efficiency of devices on energy management was also assessed. The publication also contains practical conclusions and recommendations regarding energy management on a global scale.


2018 ◽  
Vol 77 (6) ◽  
pp. 347-356
Author(s):  
G. A. Granovskaya ◽  
A. I. Safonova ◽  
O. A. Suslov ◽  
N. S. Okhotnikov

Abstract. The most important direction of increasing the efficiency of rail transportation is to increase the load-carrying capacity of freight cars as a result of an increase in axial loads. New car 12-9548-01 with improved technical characteristics has an axial load of 27 tons. The article describes method of calculating the coefficient reflecting the change in the impact of cars with an axial load of 27 tons on the roadbed during transportation in estimated cars compared to transportation in equivalent cars. Algorithms for calculating changes in the cost of fuel and energy costs for train traction and maintenance of the track infrastructure on the site during the operation of trains formed from cars with an axial load of 27 tons are given, as well as methods for determining the initial data for the calculation.Authors provide values of the coefficient reflecting the change in the impact of vertical and horizontal forces on the railway line when passing freight cars with an axial load of 27 tons compared to analogue cars, and the coefficient of change of the main specific resistance to motion separately for loaded and empty cars.Developed calculation algorithms and methods for obtaining baseline data allow an economic assessment of changes in infrastructure maintenance costs and fuel and energy resources for the operation of trains formed from cars with an axial load of 27 tons compared to those formed from cars with a load of 23.5 tons at the experimental section Kachkanar—Smychka.The cost change assessment carried out in 2017 shows a generally definite economic effect, while there is a reduction in costs associated with the consumption of electricity for train traction as a result of the operation of the estimated cars in the experimental section and an increase in the cost of maintaining the track superstructure and the roadbed, which is quite expected for the conditions of the organization of traffic with increased axial loads.


Author(s):  
Sebastian Lepszy ◽  
Tadeusz Chmielniak

Biomass integrated gasification combined cycles (BIGCC) are an interesting solution for electricity production. In relation to other biomass conversion technologies, BIGCC is characterized by relatively high energy efficiency. This article presents models and results of simulations of the gas steam cycles integrated with pressurized gasification using biomass as a feedstock. The model and simulations are preformed with Aspen Plus® computer program. The gas generator model consists of two equilibrium reactors. The use of two reactors led to more precise simulations of the flue gas composition, than the model with one reactor. The systems used for study include high-temperature gas cleaning system and a simple gas turbine. The steam cycle consists of 1-pressure heat recovery steam generator (HRSG) and a condensing steam turbine. The main results of the work are: comparison of energy efficiency for a system with different pressure ratio in a gas turbine, sensitive analysis of the impact of steam temperature and pressure in HRSG on energy efficiency. The economic analysis includes determination of the electricity price in Polish economic conditions.


Sign in / Sign up

Export Citation Format

Share Document