Effects of Ramie Fiber Treatment on Thermo-Oxidative Properties of High-Density Polyethylene/Ramie Fiber Composites

2010 ◽  
Vol 146-147 ◽  
pp. 542-545
Author(s):  
Wen Lei ◽  
Chao Ren

On the investigations on the flexural properties,color stability and melting properties,the effects of treating ramie fiber with silane coupling agent on the anti-thermo-oxidative aging properties of high density polyethylene(HDPE)/ ramie fiber composites were studied.The results show that,treating the fiber with 3% coupling agent can improve the flexural strength and modulus of the composites before the aging test by 15.9% and 21.7% respectively,and also it can improve the flexural properties of the composites after the aging test;the modified composites will be more color stable,less color difference,and less disminish of the color during the aging test;the peak melting temperatures of the modified composites when aged for 0,500,1000,1500 and 3000h will be increased by 0.6,0.2, 0.5,2.3 and 3.8 oC from those of the unmodified composites;the flexural properties,color stability and melting properties of HDPE / ramie fiber composites during thermo-oxidative aging tests all indicate that treating ramie fiber with coupling agent can improve the anti-thermo-oxidative properties of the composites.

2012 ◽  
Vol 729 ◽  
pp. 216-221 ◽  
Author(s):  
Hajnalka Hargitai ◽  
Tamás Ibriksz ◽  
János Stifter ◽  
Endre Andersen

In our experiments polyamide 6/high density polyethylene blends (25/75 wt%) were produced and maleic anhydride grafted polyethylene was used as chemical coupling agent. To get finer microstructure and enhance the mechanical properties the blends were compounded by different nanostructured reinforcements. Two kinds of nanosilicate, the layered structure montmorillonite and the needle like sepiolite were applied in different concentrations and their effect on the mechanical and melting properties were examined.


Author(s):  
Carlos Angulo ◽  
Siddhartha Brahma ◽  
Alejandra Espinosa‐Dzib ◽  
Robert Peters ◽  
Katherine M. E. Stewart ◽  
...  

2019 ◽  
Vol 76 (12) ◽  
pp. 6467-6486 ◽  
Author(s):  
Ganiyat Olusola Adebayo ◽  
Aziz Hassan ◽  
Rosiyah Yahya ◽  
Normasmira Abd Rahman ◽  
Ruth Lafia-Araga

2019 ◽  
Vol 800 ◽  
pp. 210-215
Author(s):  
Walid Fermas ◽  
Mustapha Kaci ◽  
Remo Merijs Meri ◽  
Janis Zicans

In this paper, the effect of unmodified halloysite nanotubes (HNTs) content on the chemical structure and the thermal and mechanical properties of blends based on starch-grafted-polyethylene (SgP) and high density polyethylene (HDPE) (70/30 w/w) nanocomposites was investigated at various filler content ratios, i.e. 1.5, 3 and 5 wt.%. The study showed the occurrence of chemical interactions between the polymer matrix and HNTs through OH bonding. Further, the addition of HNTs to the polymer blend led to an increase in the crystallization temperature of the nanocomposite samples, in particular at higher filler contents i.e. 3 and 5 wt.%, while the melting temperature remained almost unchanged. Tensile and flexural properties of the nanocomposite samples were however improved compared to the virgin blend with respect to the HNTs content ratio.


2016 ◽  
Vol 18 (11) ◽  
pp. 8081-8087 ◽  
Author(s):  
Xi Zhang ◽  
Shaodi Zheng ◽  
Xiaofang Zheng ◽  
Zhengying Liu ◽  
Wei Yang ◽  
...  

The positive temperature coefficient (PTC) effect for high-density polyethylene (HDPE)/carbon fiber (CF) composites was studied.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1459
Author(s):  
Agbelenko Koffi ◽  
Fayçal Mijiyawa ◽  
Demagna Koffi ◽  
Fouad Erchiqui ◽  
Lotfi Toubal

Wood–plastic composites have emerged and represent an alternative to conventional composites reinforced with synthetic carbon fiber or glass fiber–polymer. A wide variety of wood fibers are used in WPCs including birch fiber. Birch is a common hardwood tree that grows in cool areas such as the province of Quebec, Canada. The effect of the filler proportion on the mechanical properties, wettability, and thermal degradation of high-density polyethylene/birch fiber composite was studied. High-density polyethylene, birch fiber and maleic anhydride polyethylene as coupling agent were mixed and pressed to obtain test specimens. Tensile and flexural tests, scanning electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetry analysis and surface energy measurement were carried out. The tensile elastic modulus increased by 210% as the fiber content reached 50% by weight while the flexural modulus increased by 236%. The water droplet contact angle always exceeded 90°, meaning that the material remained hydrophobic. The thermal decomposition mass loss increased proportional with the percentage of fiber, which degraded at a lower temperature than the HDPE did. Both the storage modulus and the loss modulus increased with the proportion of fiber. Based on differential scanning calorimetry, neither the fiber proportion nor the coupling agent proportion affected the material melting temperature.


2009 ◽  
Vol 113 (4) ◽  
pp. 2081-2089 ◽  
Author(s):  
Jingjing Zhang ◽  
Chul B. Park ◽  
Ghaus M. Rizvi ◽  
Hanxiong Huang ◽  
Qingping Guo

Sign in / Sign up

Export Citation Format

Share Document