Prediction of the Strength Development of Fly Ash Concrete

2010 ◽  
Vol 150-151 ◽  
pp. 1026-1033 ◽  
Author(s):  
Ming Hui Liu ◽  
Yuan Feng Wang

The effect of fly ash in improving the mechanical properties of concrete is investigated and the existing concrete strength development models are studied. Based on the chemic reactivity properties between fly ash and cement, an appropriate concrete strength model are chosen, and a new model for the fly ash strength factor combing Maturity method is built up and the factors are regressed by existing experimental datum. A total of 24 concretes, including two concretes were produced with two partial fly ash replacement ratios (23.7%, 32.7%). The cubic samples produced from ash fly concrete were demoulded after a day, and cured at standard temperature ( in GB/T 50081-2002) with 100% relative humidity until 28 days, then cured in water. The compressive strength tests were carried out on the cubic specimens at different ages. The compressive strength with time was evaluated by using the new predicted model. It was found that the calculated results by new method are fit the experimental data well.

2018 ◽  
Vol 70 (11) ◽  
pp. 541-557 ◽  
Author(s):  
Gollapalli S. Vijaya Bhaskara ◽  
Kanchi Balaji Rao ◽  
Madambikkattil B. Anoop

2011 ◽  
Vol 284-286 ◽  
pp. 984-988
Author(s):  
An Shun Cheng ◽  
Yue Lin Huang ◽  
Chung Ho Huang ◽  
Tsong Yen

The study aims to research the effect of the particle size of fly ash on the compressive strength and fracture toughness of high performance concrete (HPC). In all HPC mixtures, the water-to-binder ratio selected is 0.35; the cement replacement ratios includes 0%, 10% and 20%; the particle sizes of fly ash have three types of passing through sieves No. 175, No. 250 and No. 325. Three-point-bending test was adopted to measure the load-deflection relations and the maximum loads to determine the fracture energy (GF) and the critical stress intensity factor (KSIC). Test results show that adding fly ash in HPC apparently enhances the late age strengths of HPC either for replacement ratio of 10% or 20%, in which the concrete with 10% fly ash shows the higher effect. In addition, the smaller the particle size is the better the late age concrete strength will be. The HPC with the finer fly ash can have higher strength development and the values of GF and KSIC due to the facts of better filling effect and pozzolanic reaction. At late age, the GF and KSIC values of concrete with 10% fly ash are all higher than those with 20% fly ash.


2018 ◽  
Vol 4 (4) ◽  
pp. 88
Author(s):  
Reza Fauzi Nirwan ◽  
Priyanto Saelan

ABSTRAKPenelitian ini dilakukan untuk mengetahui hasil perancangan campuran beton abu terbang yang mensubtitusi semen dengan cara pendekatan sand blended, yaitu abu terbang yang mensubtitusi semen diperlakukan sebagai agregat halus, sehingga agregat halus merupakan campuran dari pasir dan abu terbang. Penelitian dilakukan dengan kuat tekan rencana 20 MPa dan 30 MPa. Substitusi semen oleh abu terbang sebesar  10 %, 20 %, dan 30 % dari berat semen. Ukuran maksimum agregat kasar yang digunakan adalah 20 mm, dan pasir dengan modulus kehalusan 2,768, slump rencana 6 cm dan 10 cm. Hasil pengujian tekan silinder beton berdiameter 10 cm dan tinggi 20 cm menunjukkan bahwa kuat tekan beton abu terbang yang dihasilkan berdekatan dengan beton acuan yaitu beton tanpa abu terbang, untuk semua kadar abu terbang yaitu sampai dengan kadar subtitusi semen oleh abu terbang sebesar 30 %. Pendekatan sand blended dapat dilakukan dalam perancangan campuran beton abu terbang.Kata Kunci : beton abu terbang, kuat tekan, pasir blendedABSTRACTThis is research was performed to know the result of the test of fly ash concrete mix designed by sand blended method. Fly ash will be treated as fine aggregate so that the total fine aggregate is the consist of fly ash and sand. 20 MPa and 30 MPa concrete mix are designed for 10 %, 20 % and 30 % by weight of cement subtitution by fly ash. Concrete mix use 20 mm maximum aggregate size, finess modulus of sand 2.768, and 6 cm and  10 cm slump. Compressive strength tests of 10 cm diameter and 20 cm height cylinder showed that the stength of fly ash concrete is the same as the strength of initial concrete. Fly ash concrete mix can be designed by sand blended approximation.Keywords : fly ash concrete, compressive strength, blended sand


2014 ◽  
Vol 881-883 ◽  
pp. 1250-1254
Author(s):  
Qin Zhang ◽  
Song Mao ◽  
Mao Jiang ◽  
Xiao Dong Chen ◽  
Wei Cheng

The raw fly-ash applied in this study has an ignition loss of 17.30 %. The results of floatation experiment show 4.40 % coal content of tailing ash. The screen analysis results on decarburized fly ash shows that the content of +45 μm is above 12 %, failing to meet the quality of Grade I fly ash determined in the standard of China. Therefore, the decarburized fly ash was processed by grinding to meet the required quality. The analysis of the main constituents of different grinding methods conducted for tail fly ash shows that fly ash obtained by open circuit ball mill are the most suitable one used as admixture of concrete. Comparisons were made on the compressive strength and bending strength of 7d and 28d under the conditions of non-grinding and five ways of grinding. The test results show that grinding can improve the compressive strength of fly ash concrete. By way of closed-circuit grinding rod mill, concrete, can fly ash concrete strength be increased remarkablely.


2016 ◽  
Vol 872 ◽  
pp. 271-275 ◽  
Author(s):  
Mochamad Solikin

This paper presents a research to produce high strength concrete incorporated with fly ash as cement replacement up to 50% (high volume fly ash concrete) by using local material. The research is conducted by testing the strength development of high volume fly ash concrete at the age of 14 days, 28 days and 56 days. As a control mix, the compressive strength of Ordinary Portland Cement (OPC) concrete without fly ash is used. Both concrete mixtures use low w/c. consequently, they lead to the use of 1 % superplasticizer to reach sufficient workability in the process of casting. The specimens are concrete cubes with the dimension of 15 cm x15 cm x 15 cm. The totals of 24 cubes of HVFA concrete and OPC concrete are used as specimens of testing. The compressive strength design of concrete is 45 MPa and the slump design is ± 10 cm. The result shows that the compressive strengths of OPC concrete at the age of 14 days, 28 days, and 56 days are 38 MPa, 40 MPa, and 42 MPa. Whereas the compressive strength of HVFA concrete in the same age of immersing sequence are 29 MPa, 39 MPa, and 42 MPa. The result indicates that HVFA concrete can reach the similar compressive strength as that of normal concrete especially at the age of 56 days by deploying low water cement ratio.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yongli Xu ◽  
Guang Yang ◽  
Hongyuan Zhao

For cement-based materials, the curing temperature determines the strength gain rate and the value of compressive strength. In this paper, the 5% cement-stabilized macadam mixture is used. Three indoor controlled temperature curing and one outdoor natural curing scenarios are designed and implemented to study the strength development scenario law of compressive strength, and they are standard temperature curing (20°C), constant low temperature curing (10°C), day interaction temperature curing (varying from 6°C to 16°C), and one outdoor natural temperature curing (in which the air temperature ranges from 4°C to 20°C). Finally, based on the maturity method, the maturity-strength estimation model is obtained by using and analyzing the data collected from the indoor tests. The model is proved with high accuracy based on the validated results obtained from the data of outdoor tests. This research provides technical support for the construction of cement-stabilized macadam in regions with low temperature, which is beneficial in the construction process and quality control.


2011 ◽  
Vol 261-263 ◽  
pp. 416-420 ◽  
Author(s):  
Fu Ping Jia ◽  
Heng Lin Lv ◽  
Yi Bing Sun ◽  
Bu Yu Cao ◽  
Shi Ning Ding

This paper presents the results of elevated temperatures on the compressive of high fly ash content concrete (HFCC). The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and the residual compressive strength was tested after exposure to elevated temperature 250, 450, 550 and 650°C and room temperature respectively. The results showed that the compressive strength apparently decreased with the elevated temperature increased. The presence of fly ash was effective for improvement of the relative strength, which was the ratio of residual compressive strength after exposure to elevated temperature and ordinary concrete. The relative compressive strength of fly ash concrete was higher than those of ordinary concrete. Based on the experiments results, the alternating simulation formula to determine the relationship among relative strength, elevated temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after elevated temperature.


Sign in / Sign up

Export Citation Format

Share Document