Research on the Behaviors of the Adsorption of Sulfate Ions onto Cross-Linked Chitosan in Wastewater

2010 ◽  
Vol 160-162 ◽  
pp. 1797-1803 ◽  
Author(s):  
Ying Juan Guo ◽  
Juan Qin Xue ◽  
Qiang Bi ◽  
Jing Xian Li ◽  
Wei Bo Mao

Formaldehyde cross-linked chitosan was used to adsorb sulfate ions from aqueous solution in this study. Batch experiments were conducted to investigate the conditions of the adsorption, the isotherms and kinetics of the adsorption. The optimized conditions of adsorption were as follows: the adsorbent dosage was 0.5g, the equilibrium time was 240min, the initial concentration of sulfate ions was 153.3mg/L, the temperature was 50°Cand the value of pH was 2.2. The maximum adsorption capacity came up to 14.7 mg/g with the adsorption efficiency got to 95.7%. The equilibrium data fitted Langmuir isothermal model well. In addition, the adsorption process could be explained by the second-order kinetic model, and the chemisorption was the limit step for adsorption velocity.

1970 ◽  
Vol 23 ◽  
pp. 102-105 ◽  
Author(s):  
Puspa Lal Homagai ◽  
Hari Paudyal

Saponified apple waste gel was prepared in wet condition with calcium hydroxide at highly alkaline medium. The effect of initial concentration, contact time and pH of the solution was investigated. The maximum adsorption capacity onto this adsorbent was investigated for Fe(III), Cd(II), Zn(II) and Pb(II) at their optimal pH of 3, 6, 4.5 and 3.5 respectively. Langmuir isotherm and pseudo second-order kinetic model gave better explanation of the adsorption process. For binary mixture of Zn(II) and Cd(II), the separation factor and effect on adsorption capacity for both the metals were investigated.Keywords: adsorption, saponified apple waste, bioadsorption.DOI: 10.3126/jncs.v23i0.2103Journal of Nepal Chemical Society, Vol. 23, 2008/2009 Page: 102-105


2019 ◽  
Vol 19 (11) ◽  
pp. 7035-7043 ◽  
Author(s):  
Tong Ouyang ◽  
Jidan Tang ◽  
Fang Liu ◽  
Chang-Tang Chang

The objective of this paper is to study the removal of Cr(VI) in aqueous solution by using a new graphene oxide-coated rice husk biochar composite (GO-RHB). GO-RHB is a synthetic material having a porous structure with lots of oxygen-containing functional groups and a large surface area that provide effective adsorption sites. Experiments showed that GO-RHB had higher adsorption capacity under acidic than under alkaline conditions. At pH of 2, GO-RHB has the maximum adsorption capacity(48.8 mg g−1). Equilibrium data obtained by fitting with the Langmuir and Freundlich models indicate that the reaction process was monolayer adsorption. The adsorption of Cr(VI) followed the pseudo-second-order kinetic model that illustrates chemical adsorption. Intraparticlediffusion studies further revealed that film diffusion was taking place. Moreover, the results of thermodynamics showed that the adsorption process was endothermic and spontaneous in nature. The removal mechanism of Cr(VI) was also explained in detail. The prepared adsorbent is highly efficient and might be useful than many other conventional adsorbent used for the removal of Cr(VI) from wastewater.


2019 ◽  
Vol 233 (2) ◽  
pp. 201-223 ◽  
Author(s):  
Khalida Naseem ◽  
Rahila Huma ◽  
Aiman Shahbaz ◽  
Jawaria Jamal ◽  
Muhammad Zia Ur Rehman ◽  
...  

Abstract This study describes the adsorption of Cu (II), Co (II) and Ni (II) ions from wastewater on Vigna radiata husk biomass. The ability of adsorbent to capture the metal ions has been found to be in the order of Ni (II)>Co (II) and Cu (II) depending upon the size and nature of metal ions to be adsorbed. It has been observed that percentage removal of Cu (II), Co (II) and Ni (II) ions increases with increase of adsorbent dosage, contact time and pH of the medium but up to a certain extent. Maximum adsorption capacity (qmax) for Cu (II), Co (II) and Ni (II) ions has been found to be 11.05, 15.04 and 19.88 mg/g, respectively, under optimum conditions of adsorbent dosage, contact time and pH of the medium. Langmuir model best fits the adsorption process with R2 value approaches to unity for all metal ions as compared to other models because adsorption sites are seemed to be equivalent and only monolayer adsorption may occur as a result of binding of metal ion with a functional moiety of adsorbent. Pseudo second order kinetic model best interprets the adsorption process of Cu (II), Co (II) and Ni (II) ions. Thermodynamic parameters such as negative value of Gibbs energy (∆G°) gives information about feasibility and spontaneity of the process. Adsorption process was found to be endothermic for Cu (II) ions while exothermic for Co (II) and Ni (II) ions as signified by the value of enthalpy change (∆H°). Husk biomass was recycled three times for removal of Ni (II) from aqueous medium to investigate its recoverability and reusability. Moreover V. radiata husk biomass has a potential to extract Cu (II) and Ni (II) from electroplating wastewater to overcome the industrial waste water pollution.


2015 ◽  
Vol 71 (11) ◽  
pp. 1611-1619 ◽  
Author(s):  
Jun Liu ◽  
Hongyan Du ◽  
Shaowei Yuan ◽  
Wanxia He ◽  
Pengju Yan ◽  
...  

Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T = 293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (–CO−) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.


2014 ◽  
Vol 1043 ◽  
pp. 219-223 ◽  
Author(s):  
Noor Shawal Nasri ◽  
Jibril Mohammed ◽  
Muhammad Abbas Ahmad Zaini ◽  
Usman Dadum Hamza ◽  
Husna Mohd. Zain ◽  
...  

Concern about environmental protection has increased over the years and the presence of volatile organic compounds (VOCs) in water poses a threat to the environment. In this study, coconut shell activated carbon (PHAC) was produced by potassium hydroxide activation via microwave for benzene and toluene removal. Equilibrium data were fitted to Langmuir, Freundlich and Tempkin isotherms with all the models having R2 > 0.94. The equilibrium data were best fitted by Langmuir isotherm, with maximum adsorption capacity of 212 and 238mg/g for benzene and toluene, respectively. The equilibrium parameter (RL) falls between 0 and 1 confirming the favourability of the Langmuir model. Pseudo-second-order kinetic model best fitted the kinetic data. The PHAC produced can be used to remediate water polluted by VOCs.


2015 ◽  
Vol 737 ◽  
pp. 537-540
Author(s):  
Yan Wei Guo ◽  
Hua Zhang ◽  
Zhi Liang Zhu

A novel Mg/Fe/Ce layered double hydroxide (LDHs) and its calcined product (CLDH) were synthesized and CLDH was used as adsorbents for the removal of chlorate ions. Results showed that the initial solution pH was an important factor influencing the chlorate adsorption. The adsorption behavior of chlorate followed the Langmuir adsorption isotherm with a maximum adsorption capacity of 18.2 mg/g. The adsorption kinetics of chlorate on CLDH can be described by the pseudo-second-order kinetic model. It was concluded that the CLDH material is a potential adsorbent for the purification of polluted water with chlorate.


Author(s):  
Ernesto Jr. S. Cajucom ◽  
◽  
Lolibeth V. Figueroa ◽  

This study was carried out to investigate the efficiency of raw pili shell (RPS) and the surface modified pili shell using EDTA (EMPS) and oxalic acid (OMPS). A comparative study on the adsorption capacity of the adsorbents was performed against lead (Pb2+) from aqueous solution. The adsorbents were characterized by FTIR, which showed higher peak of adsorption bands of carboxylic groups on the acid modified pili shells. Scanning electron microscope orSEM was also used to describe the surface morphology of the adsorbents. The linear form of Langmuir and Freundlich models were applied to represent adsorption data. The calculated equilibrium data of Pb (II) best fitted to Langmuir compare to Freundlich isotherm model with maximum adsorption capacity (qmax) of 27.03 mg/g and 45.45 mg/g using EMPS and OMPS, respectively. Kinetic sorption models were used to determine the adsorption mechanism and the kinetic data of all the adsorbents correlated (R2=1) wellwith the pseudo second order kinetic model. Among the three adsorbents, OMPS shown higher percent removal of lead compared to RPS and EMPS. The large adsorption capacity rate indicated that chemically modified pili shell in present study has great potential to be used as a cost-effective adsorbent for the removal of lead ions from the water.


2018 ◽  
Vol 36 (3-4) ◽  
pp. 1160-1177 ◽  
Author(s):  
Liyun Yang ◽  
Xiaoming Qian ◽  
Zhi Wang ◽  
Yuan Li ◽  
Hao Bai ◽  
...  

This study investigates the removal effectiveness and characteristics of phenanthrene and naphthalene using low-cost steel slag with batch experiments. The adsorption characteristics of steel slag were measured and analysed using X-ray fluorescence, X-ray diffraction, and Fourier transform infrared spectroscopy. The batch experiments investigated the effect of the time gradient, pH, and steel slag dosage gradient on the adsorption of the steel slag. The results show that with time and dosage of steel slag increased, the adsorption capacity of phenanthrene and naphthalene increased and gradually became balanced, but pH had no obvious effect on the adsorption of phenanthrene and naphthalene. The Langmuir isotherm model best describes the phenanthrene and naphthalene removal by the steel slag, which shows the adsorption occurring in a monolayer. The maximum adsorption capacity of the steel slag to phenanthrene and naphthalene is 0.043 and 0.041 mg/g, respectively. A pseudo-first-order kinetic model can better represent the adsorption of phenanthrene and naphthalene by steel slag. The research demonstrates that the steel slag has a certain adsorption capacity for phenanthrene and naphthalene.


2017 ◽  
Vol 75 (8) ◽  
pp. 1932-1943 ◽  
Author(s):  
Farzaneh Shakib ◽  
Ahmad Dadvand Koohi ◽  
Arash Kamran Pirzaman

In this study, novel chitosan-g-itaconic acid/bentonite (CTS-g-IA/BT) and chitosan/bentonite (CTS/BT) nanocomposites were synthesized for adsorption of methylene blue (MB) from aqueous solution. The process was pH-sensitive and maximum sorption was obtained at pH 6 (CTS-g-IA/BT) and 7 (CTS/BT) in 76 h agitation time using 0.03 g of nanocomposites for 50 mL of MB solution. The results showed that in pH less than 6, the adsorption capacity of CTS-g-IA/BT nanocomposite due to the existence of IA monomer is less than that of CTS/BT nanocomposite. The Fourier transform infrared spectroscopy (FTIR) spectrum of CTS-g-IA/BT revealed that both itaconic acid and BT present in the nanocomposite structure, and also the –OH groups of BT, –NH2 and –OH of CTS participated in nanocomposite formation. According to the FTIR results, a schematic diagram of the nanocomposite synthesis was presented. The kinetic results indicated that the adsorption of MB fitted well with the pseudo-second-order kinetic model. The equilibrium data followed Langmuir isotherm with the maximum adsorption capacity of 500 and 181.818 mg/g for CTS-g-IA/BT and CTS/BT nanocomposites, respectively. The negative values of Gibbs free energy change (ΔG0) and the positive values of ΔH0 confirmed that the adsorption process is spontaneous and endothermic. The positive values of ΔS0 suggested the randomness of adsorption at interface.


2017 ◽  
Vol 76 (2) ◽  
pp. 302-310 ◽  
Author(s):  
Ying Zhou ◽  
Jingang Yu ◽  
Xinyu Jiang

A novel multi-walled carbon nanotubes (MWCNTs) material functionalized with thiosemicarbazide was synthesized successfully and used to remove lead ions from aqueous solutions. The technologies of Fourier Transform Infrared Spectroscopy, scanning electron microscopy and thermal gravimetric analysis were used to characterize the structure and properties of thiosemicarbazide grafted MWCNTs. The adsorption conditions, such as pH, contact time and temperature, were investigated. The results showed pH affected the adsorption process greatly, and the adsorption process reached equilibrium within 60 min. The maximum adsorption capacity was 42.01 mg/g. The adsorption process fitted well with the pseudo-second-order kinetic model and the Langmuir model. The thermodynamic parameters indicated the adsorption process was endothermic and spontaneous in nature.


Sign in / Sign up

Export Citation Format

Share Document