Simulated Analysis for Strengthening RC Beam Bonding with External Steel Plate

2010 ◽  
Vol 163-167 ◽  
pp. 3745-3748
Author(s):  
Lan Ying Wu ◽  
Yan Lin Wang ◽  
Fang Hong

Based on the reinforced concrete beam structure bonding with steel plate are consisted of different materials, the finite element model of the reinforced concrete beam structure bonding with steel plate was established using the whole model and the separated model respectively, the deformation, stress, strain and limit load of the reinforced concrete beam structure under the symmetrical concentrated load and the uniformly distributed load were studied using ANSYS. The research results show that the limit load value based on the finite element simulation is basically equal with the experimental value, there has little error between them, but within the scope of control in error, and the limit load under the uniformly distributed load is greater than the symmetrical concentrated load; The results from the whole model and the separated model are basically equal with the experimental results, which show that it’s feasible using the finite element simulation to analyze the reinforced concrete beam structure bonding with steel plate.

2014 ◽  
Vol 638-640 ◽  
pp. 208-213 ◽  
Author(s):  
Yuan Yuan Li ◽  
Bin Guo ◽  
Jiang Liu

Increasing the beam cross section is a kind of traditional and universal strengthening methods of civil structure. The mechanical performance test were studied on the mechanics performance and deformation of four reinforced concrete beams in this study. The results show that increase of the cross section and tensile area at the bottom of the steel could effectively improve the performance of mechanical. The beam crack load, yield load, ultimate load and bending strength are increasing with cross section and mechanical. By simulating the relationship bwteen load and deflection. It is concluded that The finite element simulation of reinforced concrete beam with the reasonable concrete unit and reinforced unit can meet the demand of practical engineering.


2011 ◽  
Vol 368-373 ◽  
pp. 967-970
Author(s):  
Hai Tao Wan ◽  
Hua Yuan

The software ABAQUS is used to perform the finite element simulation of a group of reinforced concrete beam tests. The load-displacement skeleton curves of the beams are obtained after the completion of the simulation. Test results and simulation results are compared, results showed that the finite element simulation can be more accurately simulate the test situation. Then, the software ABAQUS is also used to simulate different types of reinforced concrete frame beams, and access to load-displacement skeleton curves and moment – rotation curves of the beams. Reference to the advanced performance-based design method, the curve classified according to different factors. The performance parameters of beams are obtained from the curves. Performance parameters can provide quantitative reference index for performance evaluation of beam.


2017 ◽  
Vol 103 ◽  
pp. 02029 ◽  
Author(s):  
Norhafizah Salleh ◽  
Noor Azlina Abdul Hamid ◽  
Abdul Rahman Mohd Sam ◽  
Jamalludin Mohd Yatim ◽  
Rendy Thamrin ◽  
...  

2016 ◽  
Vol 857 ◽  
pp. 421-425
Author(s):  
Saif M. Thabet ◽  
S.A. Osman

This paper presents an investigation into the flexural behaviour of reinforced concrete beam with opening reinforced with two different materials i.e., steel and Glass Fiber Reinforced Polymer (GFRP). Comparison study between the two different materials were carried out and presented in this study through non-linear Finite Element Method (FEM) using the commercial ABAQUS 6.10 software package. The performance of the opening beam reinforced with GFRP is influenced by several key parameters. Simulation analyses were carried out to determine the behavior of beam with opening subjected to monotonic loading. The main parameters considered in this study are size of opening and reinforcement diameter. The results show that GFRP give 23%-29% more ductility than steel reinforcement. The result also shows when the size of opening change from 200mm to 150mm or from 150mm to 100mm the ultimate load capacity increase by 15%. In general, good agreement between the Finite Element (FE) simulation and the available experimental result has been obtained.


2018 ◽  
Vol 149 ◽  
pp. 02016 ◽  
Author(s):  
Yehya Temsah ◽  
Ali Jahami ◽  
Jamal Khatib ◽  
M Sonebi

Many engineering facilities are severely damaged by blast loading. Therefore, many manufacturers of sensitive, breakable, and deformed structures (such as facades of glass buildings) carry out studies and set standards for these installations to withstand shock waves caused by explosions. Structural engineers also use these standards in their designs for various structural elements by following the ISO Damage Carve, which links pressure and Impulse. As all the points below this curve means that the structure is safe and will not exceed the degree of damage based on the various assumptions made. This research aims to derive the Iso-Damage curve of a reinforced concrete beam exposed to blast wave. An advanced volumetric finite element program (ABAQUS) will be used to perform the derivation.


2020 ◽  
Vol 23 (9) ◽  
pp. 1934-1947
Author(s):  
Dapeng Chen ◽  
Li Chen ◽  
Qin Fang ◽  
Yuzhou Zheng ◽  
Teng Pan

The bending behavior of reinforced concrete beams under uniform pressure is critical for the research of the blast-resistance performance of structural components under explosive loads. In this study, a bending test of five reinforced concrete beams with the dimensions of 200 mm (width) × 200 mm (depth) × 2500 mm (length) under uniform load produced by a specific cylinder-shaped rubber bag filled with air or water was conducted to investigate their flexural performances. An air bag load was applied to three of the reinforced concrete beams, a water bag load was applied to one reinforced concrete beam, and the remainder beam was subjected to the 4-point bending load. The experimental results highlighted that the air bag and water bag loading methods can be used to effectively apply uniform loads to reinforced concrete beams. Moreover, the stiffness of the air bag was improved by 123% in accordance with the initial pressure increases from 0.15 to 0.45 MPa. In addition, a finite element model of the test loading system was established using ABAQUS/Standard software. Moreover, the critical factors of the air bag loading method were analyzed using the numerical model. The calculated results were found to be in good agreement with the test data. The established finite element model can therefore be used to accurately simulate the action performances of the uniform loading technique using rubber bags filled with air or water.


Author(s):  
R Padma Rani & R Harshani

Structural analysis is used to assess the behavior of engineering structures under the application of loads. Usually, structural analysis methods include analytical,experimental and numerical methods is used in thisproject, however, only Analytical method is used and the values are taken from literature reference, to get familiar with Finite Element Analysis (FEA) using ANSYS, this is done to acquire practical knowledge about of the effect of the cover. The aim is to identify different failure modes under a range of loading conditions by changing the cover size to get the data of various parameters such as deflection, stress etc. Study of cover helps to observe the stability, reliability and the overall strength of the structural beam. This project attempts made to study the effect of cover on the behavior of reinforced concrete beam. Forthis analytical study, the Reinforced concrete beam specimen of 2000x100x200mm was considered.ANSYS software is a suite of engineering simulation software, based on finite element method, which can solve problems ranging from linear analysis to nonlinear analysis. The Doubly reinforced beams weremodeled by using geometry. In this model,various covers are provided. The beam specimensused in this study were tested under two-point static loading condition until failure of the specimen. From theobtained resultconcluded that the total deformation and directional deformation values are low in 25mm cover compared to other cases but the equivalent stress value is low in 35mm cover size compared to 25mm cover size.


Sign in / Sign up

Export Citation Format

Share Document