Influence of Strontium Doping on Sintering and Performance of Alite-Rich Cement Clinker

2010 ◽  
Vol 168-170 ◽  
pp. 482-487
Author(s):  
Gui Qiang Li ◽  
Shou De Wang ◽  
Chao Nan Yin ◽  
Ling Chao Lu

The synthesis conditions and mechanical performance of alite-rich cement clinker were investigated by the orthogonal test method. Sintering temperature, sintering time and contents of strontium oxide or strontium sulfate were taken as the influencing factors for the orthogonal test. The experimental results show that the optimal sintering temperature and sintering time are 1450 °C and 60 min, and the best strontium oxide or strontium sulfate content in the clinker is 1.5% and 0.5%, respectively. The doping of strontium oxide or strontium sulfate can promote the formation of alite mineral. That is beneficial to the increase of cement strength. The early strength of cement can be improved by addition of strontium oxide, and the long strength of cement can be increased through adding a little of strontium sulfate.

2012 ◽  
Vol 450-451 ◽  
pp. 392-396
Author(s):  
Shou De Wang ◽  
Xiang Yang Guo ◽  
Ling Chao Lu

Calcination condition and mechanical performance of alite-rich Portland cement with barium calcium sulphoaluminate mineral(C2.75B1.25A3S ) were investigated by the orthogonal test method in which the influencing factors included sintering temperature, sintering time and cooling method. The composition, structure and performance of the clinker were analyzed by the means of X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy and metallographic microscope. The results show that C2.75B1.25A3S mineral and alite can coexist in one clinker system. The introduction of C2.75B1.25A3S mineral to clinker system is benefit to promote the formation of alite at lower temperature. The optimal sintering temperature, sintering time and cooling method are 1380°C, 60 min and two-stage cooling, respectively. Under these processing conditions, the compressive strength of alite-rich Portland cement with barium calcium sulphoaluminate reaches 43.4, 80.6 and 123.8 MPa at 3d, 7d and 28d curing ages, respectively, which shows excellent performance of mechanical strength.


2011 ◽  
Vol 306-307 ◽  
pp. 970-974
Author(s):  
Gui Qiang Li ◽  
Shou De Wang ◽  
Chao Nan Yin ◽  
Ling Chao Lu

The effects of the sintering temperature, sintering time and contents of calcium strontium suphoaluminate (C1.5Sr2.5A3) on the sintering technology of the alite-rich cement clinker modified by C1.5Sr2.5A3were researched by the orthogonal test method. X-ray diffraction, scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) and lithofacies analysis were used to investigate the compositions and structure of cement. The experimental results show that the optimal sintering temperature and sintering time of alite-rich cement clinker modified by C1.5Sr2.5A3are 1350 °C and 60 min, and the appropriate content of C1.5Sr2.5A3in the clinker is 2%. The introduction of C1.5Sr2.5A3in clinker can promote the formation of alite mineral at low temperature and decrease the sintering temperature of clinker by 100°C approximately. This new-type cement shows excellent mechanics properties. The compressive strength at 3d is up to 64.3MPa, which is increased by 26.7% comparing to that of alite-rich cement and the compressive strength at 28d is almost the same as that of alite-rich cement. For alite-rich cement clinker modified by C1.5Sr2.5A3calcinated at low temperature, alite still can be mass-formed, but the size decreases.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 494 ◽  
Author(s):  
Lei Huang ◽  
Geling Cheng ◽  
Shaowen Huang

The purpose of this study was to evaluate the effects of sintering temperature and sintering time on mineral composition of high-alite white Portland cement clinker and hydration activity of the clinker. Effects of sintering temperature and sintering time on clinker mineral composition, C3S polymorph and size and hydration heat release rate were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), differential scanning calorimetry&Thermogravimetric Analysis (DSC-TG) and isothermal heat-conduction calorimetry. Results shown that, with the increase of sintering temperature (1450–1525 °C) and sintering time (60–240 min), free lime (f-CaO) in clinker decreased, C3S grain size increased, and C3S crystal type changed from T3 to M type and R type, which exhibits higher symmetry. The hydration activity of different C3S crystals ranged from high to low as follows: T3→M1→M3→R@.


2010 ◽  
Vol 168-170 ◽  
pp. 466-471 ◽  
Author(s):  
Qiu Ying Li ◽  
Ling Chao Lu ◽  
Shou De Wang

Alite-strontium calcium sulphoaluminate cement, a new type of cementitious material, is synthesized by combining strontium calcium sulphoaluminate with minerals of Portland cement clinker. The influences of excessive SO3 and SrO on the microstructure and performances of this cement are studied by XRD, SEM-EDS and lithofacies. The results show that the optimal excessive mass fraction of SO3 and SrO are 50% and 80%. The compressive strength of the cement prepared under the testing conditions reaches to 32.8MPa, 66.8MPa and 126.4MPa at 1d, 3d and 28d curing ages, respectively. The additions of SO3 and SrO are benefit to improve the content of strontium calcium sulphoaluminate, and promote the formation of alite at low sintering temperature.


2020 ◽  
Vol 12 ◽  
Author(s):  
Zeyang Xue ◽  
Zi Wang ◽  
Chunhu Yu ◽  
Yajing Mao ◽  
Lizhai Pei

Background: Iron tailing causes great environmental and social problems which contaminate water, air and soil. Therefore, it is of important significance to prepare iron tailing ceramsites with microscale pores which can recycle the deposited iron tailing. Objective: The aim of the research is to obtain iron tailing ceramsites with microscale pores and good mechanical performance. Methods: The iron tailing ceramsites have been characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). Influence of the content of iron tailing, temperature and duration time on the mechanical performance of the obtained ceramsites was performed and the optimal sintering parameter was determined. The bulk density, apparent density and cylinder compressive strength of the obtained ceramsites increase obviously as improving the iron tailing content, temperature and sintering time. Results: Duration time and sintering temperature play important roles in the formation and size of the pores of the ceramsites. The optimal iron tailing content and sintering parameter are 70wt.%, 1100 ℃ for 40 min. The iron tailing ceramsites mainly consist of orthorhombic CaAl2Si2O8, monoclinic CaSiO3, hexagonal Ca7Si2P2O16, triclinic MgSiO3, triclinic Al2SiO5 and triclinic Ca2Fe2O5 phases. Iron tailing ceramsites from 1100 ℃ for 40 min are composed of irregular particles with several hundreds of micrometers improving the density and strength of the ceramsites. Conclusion: Iron tailing ceramsites containing microscale pores were prepared using iron tailing and fly ash, and exhibit excellent potential for the application in the field of construction.


2014 ◽  
Vol 541-542 ◽  
pp. 25-29
Author(s):  
Jin Qin ◽  
Gang Chen ◽  
Zhi Ming Du ◽  
Jia Hong Niu

The sintering temperature of 8YSZ (8mol% yttrium stabilized zirconia) is very high, usually above 1500°C. BAS (BaO-Al2O3-SiO2) microcrystalline glass can be used as sintering aids to reduce the sintering temperature of 8YSZ. In this research, large proportion (30-50wt%) BAS was added in 8YSZ to observe the influence of the sintering aids. The change rules of mechanical properties such as density test, bending strength and toughness in different material component and sintering process were researched. The results show that physical and mechanical performance improvement with the increase of sintering temperature and sintering time, density and bending strength decreases with the increase of BAS mass fraction. The optimal mechanical properties are obtained by sintering temperature 1300°C, sintering time 0.5h and 30wt% BAS.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3790
Author(s):  
Yongzheng Ji ◽  
Tsuyoshi Honma ◽  
Takayuki Komatsu

Sodium super ionic conductor (NASICON)-type Na3Zr2Si2PO12 (NZSP) with the advantages of the high ionic conductivity, stability and safety is one of the most famous solid-state electrolytes. NZSP, however, requires the high sintering temperature about 1200 °C and long sintering time in the conventional solid-state reaction (SSR) method. In this study, the liquid-phase sintering (LPS) method was applied to synthesize NZSP with the use of NaPO3 glass with a low glass transition temperature of 292 °C. The formation of NZSP was confirmed by X-ray diffraction analyses in the samples obtained by the LPS method for the mixture of Na2ZrSi2O7, ZrO2, and NaPO3 glass. The sample sintered at 1000 °C for 10 h exhibited a higher Na+ ion conductivity of 1.81 mS/cm at 100 °C and a lower activation energy of 0.18 eV compared with the samples prepared by the SSR method. It is proposed that a new LPE method is effective for the synthesis of NZSP and the NaPO3 glass has a great contribution to the Na+ diffusion at the grain boundaries.


2021 ◽  
Vol 30 ◽  
pp. 2633366X2098530
Author(s):  
Shiyang Yu ◽  
Shijun Ji ◽  
Ji Zhao ◽  
Chao Zhang ◽  
Handa Dai

The main factors affecting the displacement of micro-motion platform during the grinding process are spindle speed, cutting force, and piezoelectric ceramic input voltage model. This article, using the orthogonal test method, found a set of machining parameters which lead to less displacement deviation between practical test and theoretic analysis. First of all, single-factor experiments were carried out to study how spindle speed, cutting force, and piezoelectric ceramic input voltage model affect the experimental results, and then the orthogonal test was conducted. The experimental datum shows that voltage model was the most influential factor, followed by spindle speed and cutting force. The optimum combination of grinding parameters was obtained as spindle speed of 800 r/min, cutting force of 18 N, and voltage model radius of 12 µm. At this time, the average unit error of displacement of micro-motion platform was 9.13%.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 438
Author(s):  
Shuwei Yang ◽  
Bingliang Liang ◽  
Changhong Liu ◽  
Jin Liu ◽  
Caisheng Fang ◽  
...  

The (1–x)Ca0.61La0.26TiO3-xNd(Mg0.5Ti0.5)O3 [(1–x)CLT-xNMT, x = 0.35~0.60] ceramics were prepared via microwave sintering. The effects of sintering temperature and composition on the phase formation, microstructure, and microwave dielectric properties were investigated. The results show that the microwave sintering process requires a lower sintering temperature and shorter sintering time of (1–x)CLT-xNMT ceramics than conventional heating methods. All of the (1–x)CLT-xNMT ceramics possess a single perovskite structure. With the increase of x, the dielectric constant (ε) shows a downward trend; the quality factor (Qf) drops first and then rises significantly; the resonance frequency temperature coefficient (τf) keeps decreasing. With excellent microwave dielectric properties (ε = 51.3, Qf = 13,852 GHz, τf = −1.9 × 10−6/°C), the 0.65CLT-0.35NMT ceramic can be applied to the field of mobile communications.


Sign in / Sign up

Export Citation Format

Share Document